Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Experimental evidence for constraints in amplitude-timescale co-variation of a biomolecular pulse generating circuit design

Loading full text...

Full text loading...

/deliver/fulltext/iet-syb/14/5/IET-SYB.2019.0123.html;jsessionid=43e4pgj8lrho4.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-syb.2019.0123&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Stein, G.: ‘Respect the unstable’, IEEE Control Syst. Mag., 2003, 23, (4), pp. 1225.
    2. 2)
      • 4. Chandra, F.A., Buzi, G., Doyle, J.C.: ‘Glycolytic oscillations and limits on robust efficiency’, Science, 2011, 333, (6039), pp. 187192.
    3. 3)
      • 12. Takeda, K., Shao, D., Adler, M., et al: ‘Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway’, Sci. Signal., 2012, 5, (205), p. ra2.
    4. 4)
      • 18. Adler, M., Szekely, P., Mayo, A., et al: ‘Optimal regulatory circuit topologies for fold-change detection’, Cell Syst., 2017, 4, (2), pp. 171181.
    5. 5)
      • 15. Kim, J., Khetarpal, I., Sen, S., et al: ‘Synthetic circuit for exact adaptation and fold-change detection’, Nucleic Acids Res., 2014, 42, (9), pp. 60786089.
    6. 6)
      • 19. Mapder, T.: ‘Signal manifestation trade-offs in incoherent feed-forward loops’, arXiv preprint arXiv:161202116, 2016.
    7. 7)
      • 20. Patel, A., Sen, S.: ‘On amplitude-timescale constraints in a pulse generating biomolecular circuit’. Indian Control Conf., Kanpur, India, 2018, pp. 101106.
    8. 8)
      • 3. Beame, P.: ‘A general sequential time-space trade-off for finding unique elements’. Proc. of the Twenty-First Annual ACM Symp. on Theory of Computing, Seattle, WA, USA, 1989, pp. 197203.
    9. 9)
      • 21. Locke, J.C., Young, J.W., Fontes, M., et al: ‘Stochastic pulse regulation in bacterial stress response’, Science, 2011, 334, (6054), pp. 366369.
    10. 10)
      • 16. Shoval, O., Goentoro, L., Hart, Y., et al: ‘Fold-change detection and scalar symmetry of sensory input fields’, Proc. Natl. Acad. Sci., 2010, 107, (36), pp. 1599516000.
    11. 11)
      • 24. Boada, Y., Reynoso-Meza, G., Picó, J., et al: ‘Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case’, BMC Syst. Biol., 2016, 10, (1), p. 27.
    12. 12)
      • 14. Basu, S., Mehreja, R., Thiberge, S., et al: ‘Spatiotemporal control of gene expression with pulse-generating networks’, Proc. Natl. Acad. Sci., 2004, 101, (17), pp. 63556360.
    13. 13)
      • 9. Dalal, C.K., Cai, L., Lin, Y., et al: ‘Pulsatile dynamics in the yeast proteome’, Curr. Biol., 2014, 24, (18), pp. 21892194.
    14. 14)
      • 5. Ratushny, A.V., Shmulevich, I., Aitchison, J.D.: ‘Trade-off between responsiveness and noise suppression in biomolecular system responses to environmental cues’, PLoS Comput. Biol., 2011, 7, (6), p. e1002091.
    15. 15)
      • 7. Bhatnagar, R., El-Samad, H.: ‘Trade-offs in adapting biological systems’, Eur. J. Control, 2016, 30, pp. 6875.
    16. 16)
      • 26. Guo, S., Murray, R.M.: ‘Construction of incoherent feedforward loop circuits in a cell-free system and in cells’, ACS Synth. Biol., 2019, 8, (3), pp. 606610.
    17. 17)
      • 6. Szekely, P., Sheftel, H., Mayo, A., et al: ‘Evolutionary trade-offs between economy and effectiveness in biological homeostasis systems’, PLoS Comput. Biol., 2013, 9, (8), p. e1003163.
    18. 18)
      • 11. Shen-Orr, S.S., Milo, R., Mangan, S., et al: ‘Network motifs in the transcriptional regulation network of Escherichia coli’, Nat. Genet., 2002, 31, (1), pp. 6468.
    19. 19)
      • 28. Weiße, A.Y., Oyarzún, D.A., Danos, V., et al: ‘Mechanistic links between cellular trade-offs, gene expression, and growth’, Proc. Natl. Acad. Sci., 2015, 112, (9), pp. E1038E1047.
    20. 20)
      • 25. Helwig, B., van Sluijs, B., Pogodaev, A.A., et al: ‘Bottomup construction of an adaptive enzymatic reaction network’, Angew. Chem. Int. Ed., 2018, 57, (43), pp. 1406514069.
    21. 21)
      • 27. Scott, M., Gunderson, C.W., Mateescu, E.M., et al: ‘Interdependence of cell growth and gene expression: origins and consequences’, Science, 2010, 330, (6007), pp. 10991102.
    22. 22)
      • 22. Goentoro, L., Shoval, O., Kirschner, M.W., et al: ‘The incoherent feedforward loop can provide fold-change detection in gene regulation’, Mol. Cell, 2009, 36, (5), pp. 894899.
    23. 23)
      • 14. Basu, S., Mehreja, R., Thiberge, S., et al: ‘Spatiotemporal control of gene expression with pulse-generating networks’, Proc. Natl. Acad. Sci., 2004, 101, (17), pp. 63556360.
    24. 24)
      • 17. Shoval, O., Alon, U., Sontag, E.: ‘Symmetry invariance for adapting biological systems’, SIAM J. Appl. Dyn. Syst., 2011, 10, (3), pp. 857886.
    25. 25)
      • 1. Stein, G.: ‘Respect the unstable’, IEEE Control Syst. Mag., 2003, 23, (4), pp. 1225.
    26. 26)
      • 8. Levine, J.H., Lin, Y., Elowitz, M.B.: ‘Functional roles of pulsing in genetic circuits’, Science, 2013, 342, (6163), pp. 11931200.
    27. 27)
      • 20. Patel, A., Sen, S.: ‘On amplitude-timescale constraints in a pulse generating biomolecular circuit’. Indian Control Conf., Kanpur, India, 2018, pp. 101106.
    28. 28)
      • 3. Beame, P.: ‘A general sequential time-space trade-off for finding unique elements’. Proc. of the Twenty-First Annual ACM Symp. on Theory of Computing, Seattle, WA, USA, 1989, pp. 197203.
    29. 29)
      • 2. Simon, D.: ‘Optimal state estimation: Kalman, H, and nonlinear approaches’ (John Wiley & Sons, USA, 2006).
    30. 30)
      • 25. Helwig, B., van Sluijs, B., Pogodaev, A.A., et al: ‘Bottomup construction of an adaptive enzymatic reaction network’, Angew. Chem. Int. Ed., 2018, 57, (43), pp. 1406514069.
    31. 31)
      • 10. Levine, J.H., Fontes, M.E., Dworkin, J., et al: ‘Pulsed feedback defers cellular differentiation’, PLoS Biol., 2012, 10, (1), p. e1001252.
    32. 32)
      • 28. Weiße, A.Y., Oyarzún, D.A., Danos, V., et al: ‘Mechanistic links between cellular trade-offs, gene expression, and growth’, Proc. Natl. Acad. Sci., 2015, 112, (9), pp. E1038E1047.
    33. 33)
      • 13. Lee, R.E., Walker, S.R., Savery, K., et al: ‘Fold change of nuclear nf-κb determines tnf-induced transcription in single cells’, Mol. Cell, 2014, 53, (6), pp. 867879.
    34. 34)
      • 4. Chandra, F.A., Buzi, G., Doyle, J.C.: ‘Glycolytic oscillations and limits on robust efficiency’, Science, 2011, 333, (6039), pp. 187192.
    35. 35)
      • 27. Scott, M., Gunderson, C.W., Mateescu, E.M., et al: ‘Interdependence of cell growth and gene expression: origins and consequences’, Science, 2010, 330, (6007), pp. 10991102.
    36. 36)
      • 23. Del-Vecchio, D., Murray, R.M.: ‘Biomolecular feedback systems’ (Princeton University Press, USA, 2014).
    37. 37)
      • 9. Dalal, C.K., Cai, L., Lin, Y., et al: ‘Pulsatile dynamics in the yeast proteome’, Curr. Biol., 2014, 24, (18), pp. 21892194.
    38. 38)
      • 16. Shoval, O., Goentoro, L., Hart, Y., et al: ‘Fold-change detection and scalar symmetry of sensory input fields’, Proc. Natl. Acad. Sci., 2010, 107, (36), pp. 1599516000.
    39. 39)
      • 22. Goentoro, L., Shoval, O., Kirschner, M.W., et al: ‘The incoherent feedforward loop can provide fold-change detection in gene regulation’, Mol. Cell, 2009, 36, (5), pp. 894899.
    40. 40)
      • 12. Takeda, K., Shao, D., Adler, M., et al: ‘Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway’, Sci. Signal., 2012, 5, (205), p. ra2.
    41. 41)
      • 24. Boada, Y., Reynoso-Meza, G., Picó, J., et al: ‘Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case’, BMC Syst. Biol., 2016, 10, (1), p. 27.
    42. 42)
      • 26. Guo, S., Murray, R.M.: ‘Construction of incoherent feedforward loop circuits in a cell-free system and in cells’, ACS Synth. Biol., 2019, 8, (3), pp. 606610.
    43. 43)
      • 18. Adler, M., Szekely, P., Mayo, A., et al: ‘Optimal regulatory circuit topologies for fold-change detection’, Cell Syst., 2017, 4, (2), pp. 171181.
    44. 44)
      • 19. Mapder, T.: ‘Signal manifestation trade-offs in incoherent feed-forward loops’, arXiv preprint arXiv:161202116, 2016.
    45. 45)
      • 6. Szekely, P., Sheftel, H., Mayo, A., et al: ‘Evolutionary trade-offs between economy and effectiveness in biological homeostasis systems’, PLoS Comput. Biol., 2013, 9, (8), p. e1003163.
    46. 46)
      • 7. Bhatnagar, R., El-Samad, H.: ‘Trade-offs in adapting biological systems’, Eur. J. Control, 2016, 30, pp. 6875.
    47. 47)
      • 21. Locke, J.C., Young, J.W., Fontes, M., et al: ‘Stochastic pulse regulation in bacterial stress response’, Science, 2011, 334, (6054), pp. 366369.
    48. 48)
      • 15. Kim, J., Khetarpal, I., Sen, S., et al: ‘Synthetic circuit for exact adaptation and fold-change detection’, Nucleic Acids Res., 2014, 42, (9), pp. 60786089.
    49. 49)
      • 11. Shen-Orr, S.S., Milo, R., Mangan, S., et al: ‘Network motifs in the transcriptional regulation network of Escherichia coli’, Nat. Genet., 2002, 31, (1), pp. 6468.
    50. 50)
      • 5. Ratushny, A.V., Shmulevich, I., Aitchison, J.D.: ‘Trade-off between responsiveness and noise suppression in biomolecular system responses to environmental cues’, PLoS Comput. Biol., 2011, 7, (6), p. e1002091.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2019.0123
Loading

Supplementary material

Related content

content/journals/10.1049/iet-syb.2019.0123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address