access icon openaccess Blood glucose regulation and control of insulin and glucagon infusion using single model predictive control for type 1 diabetes mellitus

This study elaborates on the design of artificial pancreas using model predictive control algorithm for a comprehensive physiological model such as the Sorensen model, which regulates the blood glucose and can have a longer control time in normal glycaemic region. The main objective of the proposed algorithm is to eliminate the risk of hyper and hypoglycaemia and have a precise infusion of hormones: insulin and glucagon. A single model predictive controller is developed to control the bihormones, insulin, and glucagon for such a development unmeasured disturbance is considered for a random time. The simulation result for the proposed algorithm performed good regulation lowering the hypoglycaemia risk and maintaining the glucose level within the normal glycaemic range. To validate the performance of the tracking of output and setpoint, average tracking error is used and 4.4 mg/dl results are obtained while compared with standard value (14.3 mg/dl).

Inspec keywords: artificial organs; sugar; predictive control; physiological models; biochemistry; patient treatment; blood; diseases; medical control systems

Other keywords: single model predictive controller; comprehensive physiological model; longer control time; model predictive control algorithm; insulin; Sorensen model; type 1 diabetes mellitus; single model predictive control; glucagon infusion; blood glucose

Subjects: Biology and medical computing; Optimal control; Other topics in statistics; Biomedical measurement and imaging; Patient care and treatment; Prosthetics and other practical applications; Prosthetics and orthotics; Biological and medical control systems

References

    1. 1)
      • 27. Danne, T., Nimri, R., Battelino, T., et al: ‘International consensus on use of continuous glucose monitoring’, Diabetes Care, 2017, 40, (12), pp. 16311640.
    2. 2)
      • 21. Forbes, M.G., Patwardhan, R.S., Hamadah, H., et al: ‘Model predictive control in industry: challenges and opportunities’, IFAC-PapersOnLine, 2015, 48, (8), pp. 531538.
    3. 3)
      • 48. Bertachi, A., Ramkissoon, C.M., Bondia, J., et al: ‘Automated blood glucose control in type 1 diabetes: a review of progress and challenges’, Endocrinol., Diabetes Y Nutrición (English ed.), 2018, 65, (3), pp. 172181.
    4. 4)
      • 1. Deshpande, A.D., Harris-Hayes, M., Schootman, M.: ‘Epidemiology of diabetes and diabetes-related complications’, Phys. Ther., 2008, 88, (11), pp. 12541264.
    5. 5)
      • 61. Samadi, S., Rashid, M., Turksoy, K., et al: ‘Automatic detection and estimation of unannounced meals for multivariable artificial pancreas system’, Diabetes Technol. Ther., 2018, 20, (3), pp. 235246.
    6. 6)
      • 30. Finan, D.A., Zisser, H., Jovanovic, L., et al: ‘Identification of linear dynamic models for type 1 diabetes: a simulation study’, IFAC Proc. Vol., 2006, 39, (2), pp. 503508.
    7. 7)
      • 14. Wang, Y., Dassau, E., Doyle, F.J.III: ‘Closed-loop control of artificial pancreatic beta-cell in type 1 diabetes mellitus using model predictive iterative learning control’, IEEE Trans. Biomed. Eng., 2009, 57, (2), pp. 211219.
    8. 8)
      • 36. González, A.A., Voos, H., Darouach, M.: ‘Glucose–insulin system based on minimal model: a realistic approach’. 2015 17th UKSim-AMSS Int. Conf. Modelling and Simulation (UKSim), Cambridge, UK, 2015, pp. 5560.
    9. 9)
      • 3. Alberti, K.G.M.M., Zimmet, P.Z.: ‘Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation’, Diabet. Med., 1998, 15, (7), pp. 539553.
    10. 10)
      • 7. Lind, M., Polonsky, W., Hirsch, I.B, et al: ‘Continuous glucose monitoring vs. conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the gold randomized clinical trial’, J. Am. Med. Assoc., 2017, 317, (4), pp. 379387.
    11. 11)
      • 44. Molano-Jiménez, A., León-Vargas, F.: ‘Uva/padova t1dms dynamic model revision: for embedded model control’. 3rd IEEE Colombian Conf. on Automatic Control, CCAC 2017, Cartagena, Colombia, 18–20 October 2017, pp. 16.
    12. 12)
      • 47. Youssef, J.E., Castle, J., Ward, W.K.: ‘A review of closed-loop algorithms for glycemic control in the treatment of type 1 diabetes’, Algorithms, 2009, 2, (1), pp. 518532.
    13. 13)
      • 55. Gantt, J.A., Rochelle, K.A., Gatzke, E.P.: ‘Type 1 diabetic patient insulin delivery using asymmetric pi control’, Chem. Eng. Commun., 2007, 194, (5), pp. 586602.
    14. 14)
      • 43. Man, C.D., Micheletto, F., Lv, D., et al: ‘The uva/padova type 1 diabetes simulator: new features’, J. Diabetes Sci. Technol., 2014, 8, (1), pp. 2634.
    15. 15)
      • 57. Bakhtiani, P.A., Zhao, L.M., Youssef, J.E., et al: ‘A review of artificial pancreas technologies with an emphasis on bihormonal therapy’, Diabetes, Obes. Metab., 2013, 15, (12), pp. 10651070.
    16. 16)
      • 6. Haidar, A., Legault, L., Messier, V., et al: ‘Comparison of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin-pump therapy for glycaemic control in patients with type 1 diabetes: an open-label randomised controlled crossover trial’, Lancet Diabetes Endocrinol., 2015, 3, (1), pp. 1726.
    17. 17)
      • 11. Doyle, F.J., Huyett, L.M., Lee, J.B., et al: ‘Closed-loop artificial pancreas systems: engineering the algorithms’, Diabetes Care, 2014, 37, (5), pp. 11911197.
    18. 18)
      • 53. Ning, H., Wang, Y.: ‘Bihormonal artificial pancreas system based on switching model predictive control’. 2015 34th Chinese Control Conf. (CCC), Hangzhou, China, 2015, pp. 41564161.
    19. 19)
      • 35. Bergman, R.N., Phillips, L.S., Cobelli, C.: ‘Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose’, J. Clin. Invest., 1981, 68, (6), pp. 14561467.
    20. 20)
      • 22. Benkhadra, K., Alahdab, F., Tamhane, S.U, et al: ‘Continuous subcutaneous insulin infusion versus multiple daily injections in individuals with type 1 diabetes: a systematic review and meta-analysis, Endocrine, 2017, 55, pp. 7784.
    21. 21)
      • 28. Ajjan, R., Slattery, D., Wright, E.: ‘Continuous glucose monitoring: a brief review for primary care practitioners’, Adv. Ther., 2019, 36, (3), pp. 579596.
    22. 22)
      • 40. Parker, R.S., Doyle, F.J., Ward, J.H, et al: ‘Robust glucose control in diabetes using a physiological model’, AIChE J., 2000, 46, (12), pp. 25372549.
    23. 23)
      • 32. Parker, R.S., Doyle, F.J.: ‘Control-relevant modeling in drug delivery’, Adv. Drug Deliv. Rev., 2001, 48, (2), pp. 211228.
    24. 24)
      • 59. Christiansen, S.C., Fougner, A.L., Stavdahl, Ø., et al: ‘A review of the current challenges associated with the development of an artificial pancreas by a double subcutaneous approach’, Diabetes Ther., 2017, 8, (3), pp. 489506.
    25. 25)
      • 18. Wang, L.: ‘Model predictive control system design and implementation using MATLAB®’ (Springer-Verlag, London, 2009).
    26. 26)
      • 2. Nathan, D.M.: ‘The pathophysiology of diabetic complications: how much does the glucose hypothesis explain?’, Ann. Intern. Med., 1996, 124, (1_Part_2), pp. 8689.
    27. 27)
      • 52. Resalat, N., Youssef, J.E., Reddy, R., et al: ‘Design of a dual-hormone model predictive control for artificial pancreas with exercise model’. 2016 38th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC), Disney's Contemporary Resort Orlando, USA, 2016, pp. 22702273.
    28. 28)
      • 50. Bátora, V., Tárnik, M., Murgaš, J., et al: ‘Bihormonal model predictive control of blood glucose in people with type 1 diabetes’. 2014 IEEE Conf. Control Applications (CCA), Juan Les Antibes, France, 2014, pp. 16931698.
    29. 29)
      • 31. Mazur, J.E.: ‘Mathematical models and the experimental analysis of behavior’, J. Exp. Anal. Behav., 2006, 85, (2), pp. 275291.
    30. 30)
      • 37. Dias, C.C., Kamath, S., Vidyasagar, S.: ‘Modelling and simulation study of glucose–insulin control in type 1 diabetic patient used for developing artificial pancreas’. 2019 Amity International Conf. on Artificial Intelligence, AICAI 2019, Dubai, United Arab Emirates, 2019, pp. 653658.
    31. 31)
      • 45. Semizer, E., Yüceer, M., Atasoy, I., et al: ‘Comparison of control algorithms for the blood glucose concentration in a virtual patient with an artificial pancreas’, Chem. Eng. Res. Des., 2012, 90, (7), pp. 926937.
    32. 32)
      • 26. Bondia, J., Romero-Vivo, S., Ricarte, B., et al: ‘Insulin estimation and prediction: a review of the estimation and prediction of subcutaneous insulin pharmacokinetics in closed-loop glucose control’, IEEE Control Syst. Mag., 2018, 38, (1), pp. 4766.
    33. 33)
      • 4. Battelino, T., Phillip, M., Bratina, N., et al: ‘Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes’, Diabetes Care, 2011, 34, (4), pp. 795800.
    34. 34)
      • 54. Steil, G.M., Rebrin, K., Janowski, R., et al: ‘Modeling-cell insulin secretion-implications for closed-loop glucose homeostasis’, Diabetes Technol. Ther., 2003, 5, (6), pp. 953964.
    35. 35)
      • 46. Bátora, V., Tárník, M., Murgaš, J., et al: ‘The contribution of glucagon in an artificial pancreas for people with type 1 diabetes’. 2015 American Control Conf., ACC 2015, Hilton Palmer House Chicago, USA, 1 July 2015, pp. 50975102.
    36. 36)
      • 15. Messori, M., Incremona, G.P., Cobelli, C., et al: ‘Individualized model predictive control for the artificial pancreas: in silico evaluation of closed-loop glucose control’, IEEE Control Syst. Mag., 2018, 38, (1), pp. 86104.
    37. 37)
      • 19. Dougherty, D., Cooper, D.: ‘A practical multiple model adaptive strategy for multivariable model predictive control’, Control Eng. Pract., 2003, 11, (6), pp. 649664.
    38. 38)
      • 49. Russell, S.J., El-Khatib, F.H., Sinha, M., et al: ‘Outpatient glycemic control with a bionic pancreas in type 1 diabetes’, N. Engl. J. Med., 2014, 371, (4), pp. 313325.
    39. 39)
      • 38. Colmegna, P., Sánchez Peña, R.S.: ‘Analysis of three T1DM simulation models for evaluating robust closed-loop controllers’, Comput. Methods Programs Biomed., 2014, 113, (1), pp. 371382.
    40. 40)
      • 24. Rodbard, D.: ‘Continuous glucose monitoring: a review of recent studies demonstrating improved glycemic outcomes’, Diabetes Technol. Ther., 2017, 19, (S3), pp. S25.
    41. 41)
      • 56. El-Khatib, F.H., Russell, S.J., Nathan, D.M., et al: ‘A bihormonal closed-loop artificial pancreas for type 1 diabetes’, Sci. Transl. Med., 2010, 2, (27), pp. 27ra2727ra27.
    42. 42)
      • 60. Tang, F., Wang, Y.: ‘Economic model predictive control of bihormonal artificial pancreas system based on switching control and dynamic r-parameter’, J. Diabetes Sci. Technol., 2017, 11, (6), pp. 11121123.
    43. 43)
      • 29. Lunze, K., Singh, T., Walter, M., et al: ‘Blood glucose control algorithms for type 1 diabetic patients: a methodological review’, Biomed. Signal Proc. Control, 2013, 8, (2), pp. 107119.
    44. 44)
      • 16. Boughton, C.K, Hovorka, R.: ‘Is an artificial pancreas (closed-loop system) for type 1 diabetes effective?’, Diabet. Med., 2019, 36, (3), pp. 279286.
    45. 45)
      • 42. Dias, C.C., Kamath, S., Vidyasagar, S.: ‘Blood glucose regulation in diabetes mellitus patients: a review on mathematical plant model and control algorithms’, Int. J. Bioinf. Res. Appl., 2018, 14, (1–2), pp. 90103.
    46. 46)
      • 17. Camacho, E.F., Bordons, C.: ‘Model predictive contro1’ (Springer-Verlag, Berlin, Heidelberg, New York, 1998).
    47. 47)
      • 58. Shahriar, M.S., Ahmed, M.A., Rahman, M., et al: ‘Comparison of MPC and conventional control methods for the stability enhancement of UPFC connected SMIB system’. 2013 Second Int. Conf. Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 2013, pp. 223228.
    48. 48)
      • 5. Cryer, P.E.: ‘Minireview: glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes’, Endocrinology, 2012, 153, (3), pp. 10391048.
    49. 49)
      • 8. Boughton, C.K., Hovorka, R.: ‘Advances in artificial pancreas systems’, Sci. Transl. Med., 2019, 11, (484), p. eaaw4949.
    50. 50)
      • 51. Boiroux, D., Bátora, V., Hagdrup, M., et al: ‘Adaptive model predictive control for a dual-hormone artificial pancreas’, J. Process Control, 2018, 68, pp. 105117.
    51. 51)
      • 41. Hovorka, R., Canonico, V., Chassin, L.J., et al: ‘Non-linear model predictive control of glucose concentration in subjects with type 1 diabetes’, Physiol. Meas., 2004, 25, (4), p. 905.
    52. 52)
      • 34. Nicolao, G.D., Magni, L., Man, C.D., et al: ‘Modeling and control of diabetes: towards the artificial pancreas’, IFAC Proc. Vol., 2011, 44, (1), pp. 70927101.
    53. 53)
      • 9. Allen, N., Gupta, A.: ‘Current diabetes technology: striving for the artificial pancreas’, Diagnostics, 2019, 9, (1), p. 31.
    54. 54)
      • 13. Jacobs, P.G., Youssef, J.E., Castle, J.R., et al: ‘Development of a fully automated closed-loop artificial pancreas control system with dual pump delivery of insulin and glucagon’. 2011 Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 2011, pp. 397400.
    55. 55)
      • 39. Sorensen, J.T.: ‘A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes’, PhD thesis, Massachusetts Institute of Technology, 1985.
    56. 56)
      • 33. Nath, A., Biradar, S., Balan, A., et al: ‘Physiological models and control for type 1 diabetes mellitus: a brief review’, IFAC-PapersOnLine, 2018, 51, (1), pp. 289294.
    57. 57)
      • 10. Hayes, A.C., Mastrototaro, J.J., Moberg, S.B., et al: ‘Algorithm sensor-augmented bolus estimator for semi-closed-loop infusion system’. US Patent 9,320,471, 26 April 2016.
    58. 58)
      • 23. Bergenstal, R.M., Tamborlane, W.V., Ahmann, A., et al: ‘Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes’, N. Engl. J. Med., 2010, 363, (4), pp. 311320.
    59. 59)
      • 12. Patek, S.D, Magni, L., Dassau, E., et al: ‘Modular closed-loop control of diabetes’, IEEE Trans. Biomed. Eng., 2012, 59, (11), pp. 29862999.
    60. 60)
      • 25. Bekiari, E., Kitsios, K., Thabit, H., et al: ‘Artificial pancreas treatment for outpatients with type 1 diabetes: systematic review and meta-analysis’, Br. Med. J., 2018, 361, p. k1310.
    61. 61)
      • 20. Rossiter, J.A.: ‘Model-based predictive control: a practical approach’ (Taylor & Francis, Boca Raton, New York, 2017).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2019.0101
Loading

Related content

content/journals/10.1049/iet-syb.2019.0101
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading