Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Coupling of cell fate selection model enhances DNA damage response and may underlie BE phenomenon

Double-strand break-induced (DSB) cells send signal that induces DSBs in neighbour cells, resulting in the interaction among cells sharing the same medium. Since p53 network gives oscillatory response to DSBs, such interaction among cells could be modelled as an excitatory coupling of p53 network oscillators. This study proposes a plausible coupling model of three-mode two-dimensional oscillators, which models the p53-mediated cell fate selection in globally coupled DSB-induced cells. The coupled model consists of ATM and Wip1 proteins as variables. The coupling mechanism is realised through ATM variable via a mean-field modelling the bystander signal in the intercellular medium. Investigation of the model reveals that the coupling generates more sensitive DNA damage response by affecting cell fate selection. Additionally, the authors search for the cause-effect relationship between coupled p53 network oscillators and bystander effect (BE) endpoints. For this, they search for the possible values of uncertain parameters that may replicate BE experiments’ results. At certain parametric regions, there is a correlation between the outcomes of cell fate and endpoints of BE, suggesting that the intercellular coupling of p53 network may manifest itself as the form of observed BEs.

References

    1. 1)
      • 47. Mothersill, C., Bucking, C., Smith, R., et al: ‘Communication of radiation-induced stress or bystander signals between fish in vivo’, Environ. Sci. Technol., 2006, 40, (21), pp. 68596864.
    2. 2)
      • 26. Li, Q., Wang, Y.: ‘Coupling and internal noise sustain synchronized oscillation in calcium system’, Biophys. Chem., 2007, 129, (1), pp. 2328.
    3. 3)
      • 49. Richter, M., Dayaram, T., Gilmartin, A., et al: ‘WIP1 phosphatase as a potential therapeutic target in neuroblastoma’, PLOS One, 2015, 10, (2), p. e0115635.
    4. 4)
      • 23. Devi, G., Alam, M., Singh, R.: ‘Synchronization in stress p53 network’, Math. Med. Biol.: J. IMA, 2015, 32, (4), pp. 437456.
    5. 5)
      • 2. Mackonis, E., Suchowerska, N., Zhang, M., et al: ‘Cellular response to modulated radiation fields’, Phys. Med. Biol., 2007, 52, (18), pp. 54695482.
    6. 6)
      • 21. Grosovsky, A.: ‘Radiation-induced mutations in unirradiated DNA’, Proc. Natl. Acad. Sci., 1999, 96, (10), pp. 53465347.
    7. 7)
      • 43. Hu, B., Wu, L., Han, W., et al: ‘The time and spatial effects of bystander response in mammalian cells induced by low dose radiation’, Carcinogenesis, 2006, 27, (2), pp. 245251.
    8. 8)
      • 13. Kashino, G., Prise, K., Schettino, G., et al: ‘Evidence for induction of DNA double-strand breaks in the bystander response to targeted soft X-rays in CHO cells’, Mutat. Res./Fundam. Mol. Mech. Mutagen., 2004, 556, (1), pp. 209215.
    9. 9)
      • 27. Weiss, R., Knight, T.: ‘Engineered communications for microbial robotics’. Int. Workshop on DNA-based Computers, Berlin, June 2000, pp. 116.
    10. 10)
      • 14. Sokolov, M., Smilenov, L., Hall, E., et al: ‘Ionizing radiation induces DNA double-strand breaks in bystander primary human fibroblasts’, Oncogene, 2005, 24, (49), pp. 72577265.
    11. 11)
      • 38. Yakovlev, V.A.: ‘Redox biology role of nitric oxide in the radiation-induced bystander effect’, Redox Biol., 2015, 6, pp. 396400.
    12. 12)
      • 6. Yang, G., Li, W., Jiang, H., et al: ‘Low-dose radiation may be a novel approach to enhance the effectiveness of cancer therapeutics’, Int. J. Cancer, 2016, 139, (10), pp. 21572168.
    13. 13)
      • 1. Mothersill, C., Rusin, A., Fernandez-Palomo, C., et al: ‘History of bystander effects research 1905-present; what is in a name?’, Int. J. Radiat. Biol., 2018, 94, (8), pp. 696707.
    14. 14)
      • 29. Gonze, D.: ‘Modeling circadian clocks: roles, advantages, and limitations’, Open Life Sci., 2011, 6, (5), pp. 712729.
    15. 15)
      • 15. Nagasawa, H., Huo, L., Little, J.: ‘Increased bystander mutagenic effect in DNA double-strand break repair-deficient mammalian cells’, Int. J. Radiat. Biol., 2003, 79, (1), pp. 3541.
    16. 16)
      • 52. Lee, H., Parkinson, E., Granchi, C., et al: ‘Reactive oxygen species synergize to potently and selectively induce cancer cell death’, ACS Chem. Biol., 2017, 12, (5), pp. 14161424.
    17. 17)
      • 46. Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., et al: ‘Oscillations and variability in the p53 system’, Mol. Syst. Biol., 2006, 2, (1), pp. 113.
    18. 18)
      • 39. Han, W., Wu, L., Chen, S., et al: ‘Constitutive nitric oxide acting as a possible intercellular signaling molecule in the initiation of radiation-induced DNA double-strand breaks in non-irradiated bystander cells’, Oncogene, 2007, 26, (16), pp. 23302339.
    19. 19)
      • 20. Strigari, L., Mancuso, M., Ubertini, V., et al: ‘Abscopal effect of radiation therapy: interplay between radiation dose and p53 status’, Int. J. Radiat. Biol., 2014, 90, (3), pp. 248255.
    20. 20)
      • 41. Hagelstrom, R., Askin, K., Williams, A., et al: ‘DNA-PKcs and ATM influence generation of ionizing radiation-induced bystander signals’, Oncogene, 2008, 27, (53), pp. 67616769.
    21. 21)
      • 24. Liu, A.C., Welsh, D.K., Ko, C.H., et al: ‘Intercellular coupling confers robustness against mutations in the SCN circadian clock network’, Cell, 2007, 129, (3), pp. 605616.
    22. 22)
      • 44. Jaiswal, H., Lindqvist, A.: ‘Bystander communication and cell cycle decisions after DNA damage’, Front. Genet., 2015, 6, (1), pp. 6368.
    23. 23)
      • 25. Kellogg, R.A., Tay, S.: ‘Noise facilitates transcriptional control under dynamic inputs’, Cell, 2015, 160, (3), pp. 381392.
    24. 24)
      • 45. Ojima, M., Furutani, A., Ban, N., et al: ‘Persistence of DNA double-strand breaks in normal human cells induced by radiation-induced bystander effect’, Radiat. Res., 2010, 175, (1), pp. 9096.
    25. 25)
      • 30. Demirkıran, G., Demir, G.K., Güzeliş, C.: ‘Two-dimensional polynomial type canonical relaxation oscillator model for p53 dynamics’, IET Syst. Biol., 2018, 12, (4), pp. 138147.
    26. 26)
      • 32. Lam, R., Fung, Y., Han, W., et al: ‘Rescue effects: irradiated cells helped by unirradiated bystander cells’, Int. J. Mol. Sci., 2015, 16, (2), pp. 25912609.
    27. 27)
      • 9. Powathil, G.G., Adamson, D.J.A., Chaplain, M.A.J.: ‘Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a computational model’, PLoS Comput. Biol., 2013, 9, (7), p. e1003120.
    28. 28)
      • 3. Chen, S., Zhao, Y., Han, W., et al: ‘Rescue effects in radiobiology: unirradiated bystander cells assist irradiated cells through intercellular signal feedback’, Mutat. Res./Fundam. Mol. Mech. Mutagen., 2011, 706, (1), pp. 5964.
    29. 29)
      • 35. Peixoto, P., Ryu, S., Pruzansky, D., et al: ‘Mitochondrial apoptosis is amplified through gap junctions’, Biochem. Biophys. Res. Commun., 2009, 390, (1), pp. 3843.
    30. 30)
      • 4. Marín, A., Martín, M., Liñán, O., et al: ‘Bystander effects and radiotherapy’, Rep. Pract. Oncol. Radiother., 2015, 20, (1), pp. 1221.
    31. 31)
      • 10. Powathil, G.G., Munro, A.J., Chaplain, M.A., et al: ‘Bystander effects and their implications for clinical radiation therapy: insights from multiscale in silico experiments’, J. Theor. Biol., 2016, 401, (1), pp. 114.
    32. 32)
      • 31. Batchelor, E., Mock, C.S., Bhan, I., et al: ‘Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage’, Mol. Cell, 2008, 30, (3), pp. 277289.
    33. 33)
      • 42. Ghosh, S., Ghosh, A., Krishna, M.: ‘Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells’, Mutat. Res./Genet. Toxicol. Environ. Mutagen., 2015, 794, (1), pp. 3945.
    34. 34)
      • 11. Hattori, Y., Yokoya, A., Watanabe, R.: ‘Cellular automaton-based model for radiation-induced bystander effects’, BMC Syst. Biol., 2015, 9, (1), pp. 90112.
    35. 35)
      • 40. He, M., Zhao, M., Shen, B., et al: ‘Radiation-induced intercellular signaling mediated by cytochrome-c via a p53-dependent pathway in hepatoma cells’, Oncogene, 2011, 30, (16), pp. 19471955.
    36. 36)
      • 16. Sokolov, M., Dickey, J., Bonner, W., et al: ‘H2AX in bystander cells: not just a radiation-triggered event, a cellular response to stress mediated by intercellular communication’, Cell Cycle, 2007, 6, (18), pp. 22102212.
    37. 37)
      • 18. Purvis, J., Lahav, G.: ‘Encoding and decoding cellular information through signaling dynamics’, Cell, 2013, 152, (5), pp. 945956.
    38. 38)
      • 51. Oh, E., Park, H.: ‘Implications of NQO1 in cancer therapy’, BMB Rep., 2015, 48, (11), p. 609.
    39. 39)
      • 19. Koturbash, I., Loree, J., Kutanzi, K., et al: ‘In vivo bystander effect: cranial X-irradiation leads to elevated DNA damage, altered cellular proliferation and apoptosis, and increased p53 levels in shielded spleen’, Int. J. Radiat. Oncol. Biol. Phys., 2008, 70, (2), pp. 554562.
    40. 40)
      • 22. Kim, J., Jackson, T.: ‘Mechanisms that enhance sustainability of p53 pulses’, PloS One, 2013, 8, (6), p. e65242.
    41. 41)
      • 34. Demirkıran, G., Demir, G.K., Güzeliş, C.: ‘A canonical 3-D P53 network model that determines cell fate by counting pulses’, Electrica, 2018, 18, (2), pp. 284291.
    42. 42)
      • 8. Peng, V., Suchowerska, N., Esteves, A., et al: ‘Models for the bystander effect in gradient radiation fields: range and signalling type’, J. Theor. Biol., 2018, 455, (1), pp. 1625.
    43. 43)
      • 50. Kononczuk, J., Czyzewska, U., Moczydlowska, J., et al: ‘Proline oxidase (POX) as a target for cancer therapy’, Curr. Drug Targets, 2015, 16, (13), pp. 14641469.
    44. 44)
      • 7. Schoenherr, D., Krueger, S., Martin, L., et al: ‘Determining if low dose hyper-radiosensitivity (HRS) can be exploited to provide a therapeutic advantage: a cell line study in four glioblastoma multiforme (GBM) cell lines’, Int. J. Radiat. Biol., 2013, 89, (12), pp. 10091016.
    45. 45)
      • 17. Purvis, J.E., Karhohs, K.W., Mock, C., et al: ‘P53 dynamics control cell fate’, Science, 2012, 336, (6087), pp. 14401444.
    46. 46)
      • 28. Gonze, D.: ‘Modeling circadian clocks: from equations to oscillations’, Open Life Sci., 2011, 6, (5), pp. 699711.
    47. 47)
      • 33. Zhang, X.-P., Liu, F., Wang, W.: ‘Two-phase dynamics of p53 in the DNA damage response’, Proc. Natl. Acad. Sci., 2011, 108, (22), pp. 89908995.
    48. 48)
      • 37. Nowicki, M.O., Falinski, R., Koptyra, M., et al: ‘CR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks’, B. Blood, 2004, 104, (12), pp. 37463753.
    49. 49)
      • 5. Fernandez-Palomo, C., Seymour, C., Mothersill, C.: ‘Inter-relationship between low-dose hyper-radiosensitivity and radiation-induced bystander effects in the human T98G glioma and the epithelial HaCaT cell line’, Radiat. Res., 2016, 185, (2), pp. 124133.
    50. 50)
      • 12. Matsuya, Y., Sasaki, K., Yoshii, Y., et al: ‘Integrated modelling of cell responses after irradiation for DNA-targeted effects and non-targeted effects’, Sci. Rep., 2018, 8, (1), pp. 48494863.
    51. 51)
      • 48. Rothkamm, K., Löbrich, M..: ‘Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses’, Proc. Natl. Acad. Sci., 2003, 100, (9), pp. 50575062.
    52. 52)
      • 36. Azzam, E.I., de Toledo, S.M., Little, J.B.: ‘Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from α-particle irradiated to non-irradiated cells’, Proc. Natl. Acad. Sci., 2001, 98, (2), pp. 473478.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2019.0081
Loading

Related content

content/journals/10.1049/iet-syb.2019.0081
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address