Network-based computational approach to identify genetic links between cardiomyopathy and its risk factors
- Author(s): Md. Nasim Haidar 1 ; M. Babul Islam 1 ; Utpala Nanda Chowdhury 2 ; Md. Rezanur Rahman 3 ; Fazlul Huq 4 ; Julian M.W. Quinn 5 ; Mohammad Ali Moni 4, 5
-
-
View affiliations
-
Affiliations:
1:
Department of Electrical and Electronic Engineering, University of Rajshahi , Rajshahi 6205 , Bangladesh ;
2: Department of Computer Science and Engineering, University of Rajshahi , Rajshahi 6205 , Bangladesh ;
3: Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University , Sirajgonj 6751 , Bangladesh ;
4: School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney , NSW 2006 , Australia ;
5: Bone Biology Division, Garvan Institute of Medical Research , Darlinghurst, NSW 2010 , Australia
-
Affiliations:
1:
Department of Electrical and Electronic Engineering, University of Rajshahi , Rajshahi 6205 , Bangladesh ;
- Source:
Volume 14, Issue 2,
April
2020,
p.
75 – 84
DOI: 10.1049/iet-syb.2019.0074 , Print ISSN 1751-8849, Online ISSN 1751-8857
Cardiomyopathy (CMP) is a group of myocardial diseases that progressively impair cardiac function. The mechanisms underlying CMP development are poorly understood, but lifestyle factors are clearly implicated as risk factors. This study aimed to identify molecular biomarkers involved in inflammatory CMP development and progression using a systems biology approach. The authors analysed microarray gene expression datasets from CMP and tissues affected by risk factors including smoking, ageing factors, high body fat, clinical depression status, insulin resistance, high dietary red meat intake, chronic alcohol consumption, obesity, high-calorie diet and high-fat diet. The authors identified differentially expressed genes (DEGs) from each dataset and compared those from CMP and risk factor datasets to identify common DEGs. Gene set enrichment analyses identified metabolic and signalling pathways, including MAPK, RAS signalling and cardiomyopathy pathways. Protein–protein interaction (PPI) network analysis identified protein subnetworks and ten hub proteins (CDK2, ATM, CDT1, NCOR2, HIST1H4A, HIST1H4B, HIST1H4C, HIST1H4D, HIST1H4E and HIST1H4L). Five transcription factors (FOXC1, GATA2, FOXL1, YY1, CREB1) and five miRNAs were also identified in CMP. Thus the authors’ approach reveals candidate biomarkers that may enhance understanding of mechanisms underlying CMP and their link to risk factors. Such biomarkers may also be useful to develop new therapeutics for CMP.
Inspec keywords: diseases; cellular biophysics; medical disorders; molecular biophysics; RNA; biology computing; genetics; genomics; biochemistry; proteins; neurophysiology; bioinformatics; data analysis
Other keywords: high-calorie diet; HIST1H4C; managing CMP; risk factor datasets; risk factors including smoking; FOXC1; clinical depression status; differentially expressed genes; network-based computational approach; cardiomyopathy; HIST1H4D; important risk factors; authors; transcription factors; high-fat diet; inflammatory CMP development; FOXL1; systems biology approach; high dietary red meat intake; YY1; microarray gene expression datasets; protein–protein interaction network analysis identified protein subnetworks; CREB1; CDT1; ageing factors; lifestyle factors
Subjects: Knowledge engineering techniques; Physics of subcellular structures; Data handling techniques; Biology and medical computing; Patient diagnostic methods and instrumentation; Biomedical engineering; Physical chemistry of biomolecular solutions and condensed states; Probability theory, stochastic processes, and statistics; Other topics in statistics
References
-
-
1)
-
11. Rahman, M.R., Islam, T., Shahjaman, M., et al: ‘Identification of common molecular biomarker signatures in blood and brain of Alzheimer's disease’, BioRxiv, 2019, p. 482828.
-
-
2)
-
61. Muslin, A.J.: ‘Mapk signaling in cardiovascular health and disease: molecular mechanisms and therapeutic targets’, Clin. Sci. (Lond), 2008, 115, (7), pp. 203–218.
-
-
3)
-
68. Hui, W., Slorach, C., Friedberg, M.K.: ‘Apical transverse motion is associated with interventricular mechanical delay and decreased left ventricular function in children with dilated cardiomyopathy’, J. Am. Soc. Echocardiogr., 2018, 31, (8), pp. 943–950.
-
-
4)
-
17. Rana, H.K., Akhtar, M.R., Ahmed, M.B., et al: ‘Genetic effects of welding fumes on the progression of neurodegenerative diseases’, Neurotoxicology, 2019, 71, pp. 93–101.
-
-
5)
-
7. Rahman, M.R., Islam, T., Zaman, T., et al: ‘Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer's disease: insights from a systems biomedicine perspective’, Genomics, 2019, in press, Available at https://www.sciencedirect.com/science/article/pii/S0888754319301843?via%3Dihub.
-
-
6)
-
35. Moni, M.A., Lio, P.: ‘Genetic profiling and comorbidities of zika infection’, J. Infect. Dis., 2017, 216, (6), pp. 703–712.
-
-
7)
-
9. Rahman, M.R., Islam, T., Turanli, B., et al: ‘Network-based approach to identify molecular signatures and therapeutic agents in Alzheimer's disease’, Comput. Biol. Chem., 2019, 78, pp. 431–439.
-
-
8)
-
55. Shao, H., Yang, L., Wang, L., et al: ‘Microrna-34a protects myocardial cells against ischemia–reperfusion injury through inhibiting autophagy via regulating tnf α expression’, Biochem. Cell Biol., 2017, 96, (3), pp. 349–354.
-
-
9)
-
14. Rana, H.K., Akhtar, M.R., Islam, M.B., et al: ‘Genetic effects of welding fumes on the development of respiratory system diseases’, bioRxiv, 2018, p. 480855.
-
-
10)
-
48. Lambers, E., Arnone, B., Fatima, A., et al: ‘Foxc1 regulates early cardiomyogenesis and functional properties of embryonic stem cell derived cardiomyocytes’, Stem Cells, 2016, 34, (6), pp. 1487–1500.
-
-
11)
-
60. Sun, T., Li, M.Y., Li, P.F., et al: ‘Micrornas in cardiac autophagy: small molecules and big role’, Cells, 2018, 7, (8), p. 104.
-
-
12)
-
24. Ferrer-Martínez, A., Montell, E., Montori-Grau, M., et al: ‘Long-term cultured human myotubes decrease contractile gene expression and regulate apoptosis-related genes’, Gene, 2006, 384, pp. 145–153.
-
-
13)
-
23. Wittchen, F., Suckau, L., Witt, H., et al: ‘Genomic expression profiling of human inflammatory cardiomyopathy (dcmi) suggests novel therapeutic targets’, J. Mol. Med., 2007, 85, (3), pp. 257–271.
-
-
14)
-
59. Sun, C., Tong, L., Zhao, W., et al: ‘Microarray analysis reveals altered circulating microrna expression in mice infected with coxsackievirus b3’, Exp. Ther. Med., 2016, 12, (4), pp. 2220–2226.
-
-
15)
-
57. Chen, L., Jiang, M., Yuan, W., et al: ‘Mir-17-5p as a novel prognostic marker for hepatocellular carcinoma’, J. Invest. Surg., 2012, 25, (3), pp. 156–161.
-
-
16)
-
58. Seo, S., Kume, T.: ‘Forkhead transcription factors, foxc1 and foxc2, are required for the morphogenesis of the cardiac outflow tract’, Dev. Biol., 2006, 296, (2), pp. 421–436.
-
-
17)
-
26. Iwamoto, K., Kakiuchi, C., Bundo, M., et al: ‘Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders’, Mol. Psychiatry, 2004, 9, (4), p. 406.
-
-
18)
-
43. Chen, S.H., Chin, C.H., Wu, H.H., et al: ‘Cyto-hubba: a cytoscape plug-in for hub object analysis in network biology’, 2009.
-
-
19)
-
45. Calimlioglu, B., Karagoz, K., Sevimoglu, T., et al: ‘Tissue-specific molecular biomarker signatures of type 2 diabetes: an integrative analysis of transcriptomics and protein–protein interaction data’, Omics: a J. Integrative Biol., 2015, 19, (9), pp. 563–573.
-
-
20)
-
63. Rose, B.A., Force, T., Wang, Y.: ‘Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale’, Physiol. Rev., 2010, 90, (4), pp. 1507–1546.
-
-
21)
-
73. Safran, M., Dalah, I., Alexander, J., et al: ‘Genecards version 3: the human gene integrator’, Database, 2010, 2010, baq020.
-
-
22)
-
32. Kakehi, S., Tamura, Y., Takeno, K., et al: ‘Increased intramyocellular lipid/impaired insulin sensitivity is associated with altered lipid metabolic genes in muscle of high responders to a high-fat diet’, Am. J. Phys.-Endocrinol. Metabolism, 2015, 310, (1), pp. E32–E40.
-
-
23)
-
37. Sethupathy, P., Corda, B., Hatzigeorgiou, A.G.: ‘Tarbase: A comprehensive database of experimentally supported animal microrna targets’, Rna, 2006, 12, (2), pp. 192–197.
-
-
24)
-
67. Liem, D.A., Zhao, P., Angelis, E., et al: ‘Cyclindependent kinase 2 signaling regulates myocardial ischemia/reperfusion injury’, J. Mol. Cell. Cardiol., 2008, 45, (5), pp. 610–616.
-
-
25)
-
39. Hsu, S.D., Lin, F.M., Wu, W.Y., et al: ‘Mirtarbase: a database curates experimentally validated microrna–target interactions’, Nucleic Acids Res., 2010, 39, (suppl_1), pp. D163–D169.
-
-
26)
-
16. Islam, T., Rahman, M.R., Karim, M.R., et al: ‘Detection of multiple sclerosis using blood and brain cells transcript profiles: insights from comprehensive bioinformatics approach’, Inf. Med. Unlocked, 2019, 16, p. 100201.
-
-
27)
-
47. Wishart, D.S., Feunang, Y.D., Guo, A.C., et al: ‘Drugbank 5.0: a major update to the drugbank database for 2018’, Nucleic Acids Res., 2017, 46, (D1), pp. D1074–D1082.
-
-
28)
-
34. Kuleshov, M.V., Jones, M.R., Rouillard, A.D., et al: ‘Enrichr: a comprehensive gene set enrichment analysis web server 2016 update’, Nucleic Acids Res., 2016, 44, (W1), pp. W90–W97.
-
-
29)
-
30. Oñate, B., Vilahur, G., Camino-López, S., et al: ‘Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype’, BMC Genomics, 2013, 14, (1), p. 625.
-
-
30)
-
44. Moni, M.A., Liò, P.: ‘How to build personalized multi-omics comorbidity profiles’, Front. Cell. Dev. Biol., 2015, 3, p. 28.
-
-
31)
-
64. Gelb, B.D., Tartaglia, M.: ‘Ras signaling pathway mutations and hypertrophic cardiomyopathy: getting into and out of the thick of it’, J. Clin. Invest., 2011, 121, (3), pp. 844–847.
-
-
32)
-
36. Khan, A., Fornes, O., Stigliani, A., et al: ‘Jaspar 2018: update of the open-access database of transcription factor binding profiles and its web framework’, Nucleic Acids Res., 2017, 46, (D1), pp. D260–D266.
-
-
33)
-
1. Maron, B.J., Towbin, J.A., Thiene, G., et al: ‘Contemporary definitions and classification of the cardiomyopathies: an American heart association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention’, Circulation, 2006, 113, (14), pp. 1807–1816.
-
-
34)
-
38. Moni, M.A., Liò, P.: ‘Network-based analysis of comorbidities risk during an infection: sars and hiv case studies’, BMC Bioinfor., 2014, 15, (1), p. 1.
-
-
35)
-
54. Jia, C.M., Tian, Y.Y., Quan, L.N., et al: ‘Mir-26b-5p suppresses proliferation and promotes apoptosis in multiple myeloma cells by targeting jag1’, Pathol.-Res. Pract., 2018, 214, (9), pp. 1388–1394.
-
-
36)
-
51. Sucharov, C.C., Mariner, P., Long, C., et al: ‘Yin yang 1 is increased in human heart failure and represses the activity of the human α- myosin heavy chain promoter’, J. Biol. Chem., 2003, 278, (33), pp. 31233–31239.
-
-
37)
-
62. Wang, Y.: ‘Mitogen-activated protein kinases in heart development and diseases’, Circulation, 2007, 116, (12), pp. 1413–1423.
-
-
38)
-
53. Van-Rooij, E., Sutherland, L.B., Thatcher, J.E., et al: ‘Dysregulation of micrornas after myocardial infarction reveals a role of mir-29 in cardiac fibrosis’, Proc. Natl. Acad. Sci., 2008, 105, (35), pp. 13027–13032.
-
-
39)
-
15. Moni, M.A., Rana, H.K., Islam, M.B., et al: ‘Detection of Parkinson's disease using blood and brain cells transcript profiles’, bioRxiv, 2019, p. 483016.
-
-
40)
-
75. Huisamen, B., Strijdom, H., Collop, N., et al: ‘A possible role for the atm protein in the myocardial pathology associated with obesity and insulin resistance’, Cardiovasc. Res., 2014, 103, p. S118.
-
-
41)
-
27. Hardy, O.T., Perugini, R.A., Nicoloro, S.M., et al: ‘Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity’, Surg. Obes. Relat. Dis., 2011, 7, (1), pp. 60–67.
-
-
42)
-
4. Chowdhury, U.N., Ahmad, S., Islam, M.B., et al: ‘Network-based identification of genetic factors in ageing, lifestyle and type 2 diabetes that influence in the progression of alzheimer's disease’, 2018.
-
-
43)
-
8. Satu, M.S., Howlader, K.C., Akhund, T.M.N.U., et al: ‘Bioinformatics approach to identify diseasome and comorbidities effect of mitochondrial dysfunctions on the progression of neurological disorders’, bioRxiv, 2018, p. 483065.
-
-
44)
-
21. Hossain, M.A., Asa, T.A., Quinn, J.M., et al: ‘Network-based genetic profiling, and therapeutic target identification of thyroid cancer’, bioRxiv, 2018, p. 480632.
-
-
45)
-
6. Barabási, A.L., Gulbahce, N.: ‘Network medicine: a network-based approach to human disease’, Nat. Rev. Genetics, 2011, 12, (1), pp. 56–68.
-
-
46)
-
29. McClintick, J.N., Xuei, X., Tischfield, J.A., et al: ‘Stress–response pathways are altered in the hippocampus of chronic alcoholics’, Alcohol, 2013, 47, (7), pp. 505–515.
-
-
47)
-
74. Liao, H.S., Kang, P.M., Nagashima, H., et al: ‘Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes’, Circ. Res., 2001, 88, (4), pp. 443–450.
-
-
48)
-
52. Watson, P.A., Birdsey, N., Huggins, G.S., et al: ‘Cardiac-specific overexpression of dominant-negative creb leads to increased mortality and mitochondrial dysfunction in female mice’, Am. J. Physiol.-Heart Circulatory Phys., 2010, 299, (6), pp. H2056–H2068.
-
-
49)
-
71. Meng, H., Liang, Y., Hao, J., et al: ‘Comparison of rejection-specific genes in peripheral blood and allograft biopsy from kidney transplant’, Transplant. Proc., 2018, 50, pp. 115–123.
-
-
50)
-
25. Büttner, P., Mosig, S., Funke, H.: ‘Gene expression profiles of t lymphocytes are sensitive to the influence of heavy smoking: a pilot study’, Immunogenetics, 2007, 59, (1), pp. 37–43.
-
-
51)
-
18. Rahman, M., Islam, T., Gov, E., et al: ‘Identification of prognostic biomarker signatures and candidate drugs in colorectal cancer: insights from systems biology analysis’, Medicina, 2019, 55, (1), p. 20.
-
-
52)
-
50. Zhang, G., He, P., Gaedcke, J., et al: ‘Foxl1, a novel candidate tumor suppressor, inhibits tumor aggressiveness and predicts outcome in human pancreatic cancer’, Cancer Res., 2013, 73, (17), pp. 5416–5425.
-
-
53)
-
70. Sookoian, S., Pirola, C.J.: ‘Systems biology elucidates common pathogenic mechanisms between nonalcoholic and alcoholic-fatty liver disease’, PLOS One, 2013, 8, (3), p. e58895.
-
-
54)
-
40. Szklarczyk, D., Morris, J.H., Cook, H., et al: ‘The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible’, Nucleic Acids Res., 2017, 45, (D1), pp. D362–D368, https://doi.org/10.1093/nar/gkw937.
-
-
55)
-
69. Pozo, P., Cook, J.: ‘Regulation and function of cdt1; a key factor in cell proliferation and genome stability’, Genes, 2016, 8, (1), p. 2.
-
-
56)
-
72. Yin, H.K., Li, X.Y., Jiang, Z.G., et al: ‘Progress in neuregulin/erbb signaling and chronic heart failure’, World. J. Hypertens., 2015, 5, (2), pp. 63–73.
-
-
57)
-
22. Barrett, T., Wilhite, S.E., Ledoux, P., et al: ‘Ncbi geo: archive for functional genomics data sets-update’, Nucleic Acids Res., 2012, 41, (D1), pp. D991–D995.
-
-
58)
-
65. Li, J.: ‘Alterations in cell adhesion proteins and cardiomyopathy’, World. J. Cardiol., 2014, 6, (5), p. 304.
-
-
59)
-
5. Sakib, N., Chowdhury, U.N., Islam, M.B., et al: ‘A system biology approach to identify the genetic markers to the progression of Parkinson's disease for aging, lifestyle and type 2 diabetes’, bioRxiv, 2018, p. 482760.
-
-
60)
-
28. Hebels, D.G., Sveje, K.M., de Kok, M.C., et al: ‘N-nitroso compound exposure-associated transcriptomic profiles are indicative of an increased risk for colorectal cancer’, Cancer Lett., 2011, 309, (1), pp. 1–10.
-
-
61)
-
20. Hossain, M.A., Asa, T.A., Rahman, M.R., et al: ‘Network-based approach to identify key candidate genes and pathways shared by thyroid cancer and chronic kidney disease’, Inf. Med. Unlocked, 2019, 16, p. 100240.
-
-
62)
-
3. Towbin, J.A., Lowe, A.M., Colan, S.D., et al: ‘Incidence, causes, and outcomes of dilated cardiomyopathy in children’, J. Am. Med. Assoc., 2006, 296, (15), pp. 1867–1876.
-
-
63)
-
46. Moni, M.A., Liò, P.: ‘Comor: a software for disease comorbidity risk assessment’, J. Clin. Bioinfor., 2014, 4, (1), p. 1.
-
-
64)
-
12. Islam, T., Islam, M.R.R., Shahjaman, M., et al: ‘Blood-based molecular biomarker signatures in Alzheimer's disease: insights from systems biomedicine perspective’, bioRxiv, 2018, p. 481879.
-
-
65)
-
49. Connelly, J.J., Wang, T., Cox, J.E., et al: ‘Gata2 is associated with familial early-onset coronary artery disease’, PLoS Genet., 2006, 2, (8), p. e139.
-
-
66)
-
19. Hossain, M.A., Asa, T.A., Huq, F., et al: ‘A network-based approach to identify molecular signatures and comorbidities of thyroid cancer’. Proc. of Int. Joint Conf. on Computational Intelligence, Springer, Singapore, 2020, pp. 235–246.
-
-
67)
-
42. Moni, M.A., Xu, H., Liò, P.: ‘Cytocom: a cytoscape app to visualize, query and analyse disease comorbidity networks’, Bioinformatics, 2014, 31, (6), pp. 969–971.
-
-
68)
-
10. Rahman, M., Islam, T., Shahjaman, M., et al: ‘Discovering biomarkers and pathways shared by Alzheimer's disease and ischemic stroke to identify novel therapeutic targets’, Medicina, 2019, 55, (5), p. 191.
-
-
69)
-
41. Smoot, M.E., Ono, K., Ruscheinski, J., et al: ‘Cytoscape 2.8: new features for data integration and network visualization’, Bioinformatics, 2010, 27, (3), pp. 431–432.
-
-
70)
-
31. Gille, D., Zangger, N., Soneson, C., et al: ‘Caloric dose-responsive genes in blood cells differentiate the metabolic status of obese men’, J. Nutr. Biochem., 2017, 43, pp. 156–165.
-
-
71)
-
56. Bonauer, A., Carmona, G., Iwasaki, M., et al: ‘Microrna-92a controls angiogenesis and functional recovery of ischemic tissues in mice’, Science, 2009, 324, (5935), pp. 1710–1713.
-
-
72)
-
13. Moni, M.A., Rana, H.K., Islam, M.B., et al: ‘A computational approach to identify blood cell-expressed Parkinson's disease biomarkers that are coordinately expressed in brain tissue’, Comput. Biol. Med., 2019, 113, p. 103385.
-
-
73)
-
2. Disease, G., Incidence, I., Prevalence, C.: ‘Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease study 2015’, Lancet, 2016, 388, (10053), pp. 1545–1602.
-
-
74)
-
33. Xu, H., Moni, M.A., Liò, P.: ‘Network regularised Cox regression and multiplex network models to predict disease comorbidities and survival of cancer’, Comput. Biol. Chem., 2015, 59, pp. 15–31.
-
-
75)
-
66. Kapelko, V.I.: ‘Extracellular matrix alterations in cardiomyopathy: the possible crucial role in the dilative form’, Exp. Clinical Cardiol., 2001, 6, (1), p. 41.
-
-
1)