http://iet.metastore.ingenta.com
1887

Biclustering-based association rule mining approach for predicting cancer-associated protein interactions

Biclustering-based association rule mining approach for predicting cancer-associated protein interactions

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Protein–protein interactions (PPIs) have been widely used to understand different biological processes and cellular functions associated with several diseases like cancer. Although some cancer-related protein interaction databases are available, lack of experimental data and conflicting PPI data among different available databases have slowed down the cancer research. Therefore, in this study, the authors have focused on various proteins that are directly related to different types of cancer disease. They have prepared a PPI database between cancer-associated proteins with the rest of the human proteins. They have also incorporated the annotation type and direction of each interaction. Subsequently, a biclustering-based association rule mining algorithm is applied to predict new interactions with type and direction. This study shows the prediction power of association rule mining algorithm over the traditional classifier model without choosing a negative data set. The time complexity of the biclustering-based association rule mining is also analysed and compared to traditional association rule mining. The authors are able to discover 38 new PPIs which are not present in the cancer database. The biological relevance of these newly predicted interactions is analysed by published literature. Recognition of such interactions may accelerate a way of developing new drugs to prevent different cancer-related diseases.

References

    1. 1)
      • 1. Jansen, R., Yu, H., Greenbaum, D., et al: ‘A Bayesian networks approach for predicting protein-protein interactions from genomic data’, Science, 2003, 302, (5644), pp. 449453.
    2. 2)
      • 2. Ben-Hur, A., Noble, W.S.: ‘Kernel methods for predicting protein–protein interactions’, Bioinformatics, 2005, 21, (suppl 1), pp. i38i46.
    3. 3)
      • 3. Zhang, Q.C., Petrey, D., Deng, L., et al: ‘Structure-based prediction of protein-protein interactions on a genome-wide scale’, Nature, 2012, 490, (7421), pp. 556560.
    4. 4)
      • 4. Tomczak, K., Czerwiska, P., Wiznerowicz, M.: ‘The cancer genome atlas (tcga): an immeasurable source of knowledge’, Contemp. Oncol., 2015, 19, (1A), p. A68.
    5. 5)
      • 5. Zhang, J., Baran, J., Cros, A., et al: ‘International cancer genome consortium data portal—a one-stop shop for cancer genomics data’, Database, 2011, 2011, pg. bar026.
    6. 6)
      • 6. Berk, A., Zipursky, S., Lodish, H.: ‘Molecular cell biology’ (W. H. Freeman, New York, 2000, 4th Edn.).
    7. 7)
      • 7. Hasegawa, H.: ‘Kernel methods for predicting protein-protein interactions’, 2008.
    8. 8)
      • 8. Kar, G., Gursoy, A., Keskin, O.: ‘Human cancer protein-protein interaction network: a structural perspective’, PLoS Comput. Biol., 2009, 5, (12), p. e1000601.
    9. 9)
      • 9. Li, Z., Ivanov, A.A., Su, R., et al: ‘The oncoppi network of cancer-focused protein–protein interactions to inform biological insights and therapeutic strategies’, Nat. Commun., 2017, 8, p. 14356.
    10. 10)
      • 10. Mani, K.M., Lefebvre, C., Wang, K., et al: ‘A systems biology approach to prediction of oncogenes and molecular perturbation targets in b-cell lymphomas’, Mol. Syst. Biol., 2008, 4, (1), p. 169.
    11. 11)
      • 11. Guda, P., Chittur, S.V., Guda, C.: ‘Comparative analysis of protein-protein interactions in cancer-associated genes’, Genomics Proteomics Bioinformatics, 2009, 7, (1-2), pp. 2536.
    12. 12)
      • 12. Wu, G., Feng, X., Stein, L.: ‘A human functional protein interaction network and its application to cancer data analysis’, Genome Biol., 2010, 11, (5), p. R53.
    13. 13)
      • 13. Taylor, I.W., Linding, R., Warde-Farley, D., et al: ‘Dynamic modularity in protein interaction networks predicts breast cancer outcome’, Nat. Biotechnol., 2009, 27, (2), p. 199.
    14. 14)
      • 14. Szklarczyk, D., Franceschini, A., Kuhn, M., et al: ‘The string database in 2011: functional interaction networks of proteins, globally integrated and scored’, Nucleic Acids Res., 2011, 39, (suppl 1), pp. D561D568.
    15. 15)
      • 15. Von Mering, C., Huynen, M., Jaeggi, D., et al: ‘String: a database of predicted functional associations between proteins’, Nucleic Acids Res., 2003, 31, (1), pp. 258261.
    16. 16)
      • 16. Chatr-Aryamontri, A., Oughtred, R., Boucher, L., et al: ‘The biogrid interaction database: 2017 update’, Nucleic Acids Res., 2017, 45, (D1), pp. D369D379.
    17. 17)
      • 17. Xenarios, I., Salwinski, L., Duan, X. J., et al: ‘Dip, the database of interacting proteins: a research tool for studying cellular networks of protein interactions’, Nucleic Acids Res., 2002, 30, (1), pp. 303305.
    18. 18)
      • 18. Maulik, U., Bhattacharyya, M., Mukhopadhyay, A., et al: ‘Identifying the immunodeficiency gateway proteins in humans and their involvement in microrna regulation’, Mol. BioSyst., 2011, 7, (6), pp. 18421851.
    19. 19)
      • 19. Mondal, K.C., Pasquier, N., Mukhopadhyay, A., et al: ‘A new approach for association rule mining and bi-clustering using formal concept analysis’. Int. Workshop on Machine Learning and Data Mining in Pattern Recognition, Berlin, Germany, 2012, pp. 86101.
    20. 20)
      • 20. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: ‘A novel biclustering approach to association rule mining for predicting hiv-1–human protein interactions’, PLOS One, 2012, 7, (4), p. e32289.
    21. 21)
      • 21. Ben-Hur, A., Noble, W.S.: ‘Choosing negative examples for the prediction of protein-protein interactions’. BMC Bioinformatics, Whistler, British Columbia, Canada, 2006, Vol. 7, p. S2, BioMed Central.
    22. 22)
      • 22. Barman, R.K., Saha, S., Das, S.: ‘Prediction of interactions between viral and host proteins using supervised machine learning methods’, PloS One, 2014, 9, (11), p. e112034.
    23. 23)
      • 23. Liberona, J.L., Powell, J.A., Shenoi, S., et al: ‘Differences in both inositol 1, 4, 5-trisphosphate mass and inositol 1, 4, 5-trisphosphate receptors between normal and dystrophic skeletal muscle cell lines’, Muscle Nerve, 1998, 21, (7), pp. 902909.
    24. 24)
      • 24. Yim, S., Yu, H., Jang, D., et al: ‘Annotating activation/inhibition relationships to protein-protein interactions using gene ontology relations’, BMC Syst. Biol., 2018, 12, (1), p. 9.
    25. 25)
      • 25. Eom, J.-H., Zhang, B.-T.: ‘Prediction of protein interaction with neural network-based feature association rule mining’, Neural Inf. Process., 2006, 4234, pp. 3039.
    26. 26)
      • 26. Sahoo, S.S., Swarnkar, T.: ‘A theoretical approach for augmenting association rule mining to predict protein-protein interaction’, Exp. Tech., 2011, 2, (5), p. 8.
    27. 27)
      • 27. Gyenesei, A., Wagner, U., Barkow-Oesterreicher, S., et al: ‘Mining co-regulated gene profiles for the detection of functional associations in gene expression data’, Bioinformatics, 2007, 23, (15), pp. 19271935.
    28. 28)
      • 28. Mukhopadhyay, A., Ray, S., Maulik, U.: ‘Incorporating the type and direction information in predicting novel regulatory interactions between hiv-1 and human proteins using a biclustering approach’, BMC Bioinformatics, 2014, 15, (1), p. 26.
    29. 29)
      • 29. Voggenreiter, O., Bleuler, S., Gruissem, W.: ‘Exact biclustering algorithm for the analysis of large gene expression data sets’, BMC Bioinformatics, 2012, 13, (Suppl 18), p. A10.
    30. 30)
      • 30. Barkow, S., Bleuler, S., Preli, A., et al: ‘BicAT: a Biclustering Analysis Toolbox’, Bioinformatics, 2006, 22, (10), pp. 12821283.
    31. 31)
      • 31. Acar, E., Dunlavy, D.M., Kolda, T.G.: ‘Link prediction on evolving data using matrix and tensor factorizations’. 2009 IEEE Int. Conf. on data mining workshops, Miami, Florida, USA, 2009, pp. 262269.
    32. 32)
      • 32. Yokoi, S., Kajino, H., Kashima, H.: ‘Link prediction in sparse networks by incidence matrix factorization’, J. Inf. Process., 2017, 25, pp. 477485.
    33. 33)
      • 33. Shannon, P., Markiel, A., Ozier, O., et al: ‘Cytoscape: a software environment for integrated models of biomolecular interaction networks’, Genome Res., 2003, 13, (11), pp. 24982504.
    34. 34)
      • 34. Ferreira, J.V., Fôfo, H., Bejarano, E., et al: ‘Stub1/chip is required for hif1a degradation by chaperone-mediated autophagy’, Autophagy, 2013, 9, (9), pp. 13491366.
    35. 35)
      • 35. Nicholson, J., Neelagandan, K., Huart, A.-S., et al: ‘An itraq proteomics screen reveals the effects of the mdm2 binding ligand nutlin-3 on cellular proteostasis’, J. Proteome Res., 2012, 11, (11), pp. 54645478.
    36. 36)
      • 36. Lee, M.-O., Kang, H.-J.: ‘Role of coactivators and corepressors in the induction of the rar. beta. Gene in human colon cancer cells’, Biol. Pharm. Bull., 2002, 25, (10), pp. 12981302.
    37. 37)
      • 37. Orre, L., Panizza, E., Kaminskyy, V., et al: ‘S100a4 interacts with p53 in the nucleus and promotes p53 degradation’, Oncogene, 2013, 32, (49), pp. 55315540.
    38. 38)
      • 38. Froesch, B.A., Takayama, S., Reed, J.C.: ‘Bag-1 l protein enhances androgen receptor function’, J. Biol. Chem., 1998, 273, (19), pp. 1166011666.
    39. 39)
      • 39. Kwon, J. Y., Weon, J.-I., Koedrith, P., et al: ‘Identification of molecular candidates and interaction networks via integrative toxicogenomic analysis in a human cell line following low-dose exposure to the carcinogenic metals cadmium and nickel’, Oncol. Rep., 2013, 30, (3), pp. 11851194.
    40. 40)
      • 40. Antoniv, T.T., Ivashkiv, L.B.: ‘Interleukin-10-induced gene expression and suppressive function are selectively modulated by the pi3k-akt-gsk3 pathway’, Immunology, 2011, 132, (4), pp. 567577.
    41. 41)
      • 41. Carmona, F.J., Montemurro, F., Kannan, S., et al: ‘Akt signaling in erbb2-amplified breast cancer’, Pharm. Therapeutics, 2016, 158, pp. 6370.
    42. 42)
      • 42. Tchafa, A.M., Ta, M., Reginato, M.J., et al: ‘EMT transition alters interstitial fluid flow-induced signaling in erbb2-positive breast cancer cells’, Mol. Cancer Res., 2015, 13, (4), pp. 755764.
    43. 43)
      • 43. Mizowaki, T., Sasayama, T., Tanaka, K., et al: ‘STAT3 activation is associated with cerebrospinal fluid interleukin-10 (il-10) in primary central nervous system diffuse large b cell lymphoma’, J. Neuro-Oncol., 2015, 124, pp. 110.
    44. 44)
      • 44. Iyer, S.S., Cheng, G.: ‘Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease’, Crit. Rev.Immunol, 2012, 32, (1), pp. 2363.
    45. 45)
      • 45. Box, J.K., Paquet, N., Adams, M.N., et al: ‘Nucleophosmin: from structure and function to disease development’, BMC Mol. Biol., 2016, 17, (1), p. 19.
    46. 46)
      • 46. Brasil, A.S., Malaquias, A.C., Wanderley, L.T., et al: ‘Co-occurring ptpn11 and sos1 gene mutations in Noonan syndrome: does this predict a more severe phenotype?’, Arquivos Brasileiros de Endocrinologia Metabologia, 2010, 54, (8), pp. 717722.
    47. 47)
      • 47. Wang, J., Guan, E., Roderiquez, G., et al: ‘Role of tyrosine phosphorylation in ligand-independent sequestration of cxcr4 in human primary monocytes-macrophages’, J. Biol. Chem., 2001, 276, pp. 4923649243.
    48. 48)
      • 48. Buckley, N., D'costa, Z., Kaminska, M., et al: ‘S100a2 is a brca1/p63 coregulated tumour suppressor gene with roles in the regulation of mutant p53 stability’, Cell Death Dis., 2014, 5, (2), p. e1070.
    49. 49)
      • 49. Burke, S.D., Seaward, A.V., Ramshaw, H., et al: ‘Homing receptor expression is deviated on cd56 + blood lymphocytes during pregnancy in type 1 diabetic women’, PloS One, 2015, 10, (3), p. e0119526.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2019.0045
Loading

Related content

content/journals/10.1049/iet-syb.2019.0045
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address