Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Bifurcation analysis of bistable and oscillatory dynamics in biological networks using the root-locus method

Most of the biological systems including gene regulatory networks can be described well by ordinary differential equation models with rational non-linearities. These models are derived either based on the reaction kinetics or by curve fitting to experimental data. This study demonstrates the applicability of the root-locus-based bifurcation analysis method for studying the complex dynamics of such models. The effectiveness of the bifurcation analysis in determining the exact parameter regions in each of which the system shows a certain dynamical behaviour, such as bistability, oscillation, and asymptotically equilibrium dynamics is shown by considering two mostly studied gene regulatory networks, namely Gardner's genetic toggle switch and p53 gene network possessing two-phase (mono-stable/oscillation) dynamics.

References

    1. 1)
      • 13. Avcu, N., Demir, G., Pekergin, F., et al: ‘Discriminant-based bistability analysis of a TMG-induced lac operon model supported with boundedness and local stability results’, Turk. J. Electr. Eng. Comput. Sci., 2016, 24, pp. 719732.
    2. 2)
      • 25. Lahav, G., Rosenfeld, N., Sigal, A., et al: ‘Dynamics of the p53-Mdm2 feedback loop in individual cell’, Nat. Genet., 2004, 36, pp. 147150.
    3. 3)
      • 19. Suarez, R., Alvarez-Ramirez, J., Aguirre, B.: ‘First harmonic analysis of planar linear systems with single saturated feedback’, Int. J. Bifurcation Chaos, 1996, 6, pp. 26052610.
    4. 4)
      • 9. Demirkran, G., Demir, G.K., Güzeliş, C.: ‘Revealing determinants of two-phase dynamics of p53 network under gamma irradiation based on a reduced 2-D relaxation oscillator model’, IET Syst. Biol., 2017, 12, pp. 2638.
    5. 5)
      • 22. Chua, L.O., Desoer, C.A., Kuh, E.S.: ‘Linear and nonlinear circuits’ (McGraw-Hill, USA, 1987, 1st edn.).
    6. 6)
      • 16. Ozbudak, E.M., Thattai, M., Lim, H.N., et al: ‘Multistability in the lactose utilization network of Escherichia coli’, Nature, 2004, 427, pp. 737740.
    7. 7)
      • 2. Kitano, H.: ‘Systems biology: a brief overview’, Science, 2002, 295, pp. 16621664.
    8. 8)
      • 15. Avcu, N., Pekergin, N., Pekergin, F.: ‘Coexistence of deterministic and stochastic bistability in a 1-D birth-death process with Hill type nonlinear birth rates’, in Sanayei, A., et al (Eds.): ‘ISCS 2014: interdisciplinary symposium on complex systems’ (Springer, Switzerland, 2015, 1st edn.), pp. 7786.
    9. 9)
      • 11. Demirkran, G., Demir, G.K., Güzeliş, C.: ‘A canonical 3-D p53 network model that determines cell fate by counting pulses’, Electrica, 2018, 18, pp. 284291.
    10. 10)
      • 24. Murray-Zmijewski, F., Slee, E.A., Lu, X.: ‘A complex barcode underlies the heterogeneous response of p53 to stress’, Nat. Rev. Mol. Cell Biol., 2008, 9, pp. 702712.
    11. 11)
      • 28. Michael, D., Oren, M.: ‘The p53-Mdm2 module and the ubiquitin system’, Semin. Cancer Biol., 2003, 13, pp. 4958.
    12. 12)
      • 21. Aguirre, B., Alvarez-Ramirez, J., Suarez, R.: ‘Symmetry breaking of periodic orbits in control systems: an harmonic balance approach’, Int. J. Bifurcation Chaos, 1998, 8, pp. 24392448.
    13. 13)
      • 18. Meijer, H.: ‘Matcont tutorial: ode gui version’, 2016.
    14. 14)
      • 6. de Jong, H.: ‘Modeling and simulation of genetic regulatory systems: a literature review’, J. Comput. Biol., 2002, 9, pp. 67103.
    15. 15)
      • 31. Purvis, J.E., Karhohs, K.W., Mock, C., et al: ‘P53 dynamics control cell fate’, Science, 2012, 336, pp. 14401444.
    16. 16)
      • 3. Angeli, D., Ferrell, J.E.Jr., Sontag, E.D.: ‘Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems’, Proc. Natl. Acad. Sci., 2004, 101, pp. 18221827.
    17. 17)
      • 29. Lahav, G., Rosenfeld, N., Sigal, A., et al: ‘Dynamics of the p53-Mdm2 feedback loop in individual cells’, Nat. Genet., 2004, 36, pp. 147150.
    18. 18)
      • 7. Gardner, T. S., Cantor, C. R., Collins, J. J.: ‘Construction of a genetic toggle switch in Escherichia coli’, Nature, 2000, 403, pp. 339342.
    19. 19)
      • 23. Soussi, T.: ‘The history of p53’, EMBO Rep., 2010, 11, pp. 822826.
    20. 20)
      • 20. Aguirre, B., Alvarez-Ramirez, J., Fernandez, G., et al: ‘First harmonic analysis of linear control systems with high-gain saturated feedback’, Int. J. Bifurcation Chaos, 1997, 7, pp. 25012510.
    21. 21)
      • 5. DiStefano III, J.: ‘Dynamic systems biology modeling and simulation’ (Academic Press, UK, 2015, 1st edn.).
    22. 22)
      • 8. Khalid, M., Khan, S., Ahmad, J., et al: ‘Identification of self-regulatory network motifs in reverse engineering gene regulatory networks using microarray gene expression data’, IET Syst. Biol., 2018, 13, pp. 5568.
    23. 23)
      • 30. Vousden, K., Lane, D.: ‘P53 in health and disease’, Mol. Cell Biol., 2007, 8, pp. 275283.
    24. 24)
      • 4. Murray, J.D.: ‘Biological oscillators and switches’, in Antman, S.S. (Ed.): ‘Mathematical biology I: an introduction’ (Springer, USA, 2007, 3rd edn.), pp. 218256.
    25. 25)
      • 1. Kitano, H.: ‘Computational systems biology’, Nature, 2002, 420, pp. 206210.
    26. 26)
      • 26. Batchelor, E., Mock, C.S., Bhan, I., et al: ‘Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage’, Mol. Cell, 2008, 30, pp. 277289.
    27. 27)
      • 33. Zhang, X.P., Liu, F., Wang, W.: ‘Two-phase dynamics of p53 in the DNA damage response’, Proc. Natl. Acad. Sci., 2011, 108, pp. 89908995.
    28. 28)
      • 12. Avcu, N., Alyürük, H., Demir, G. K., et al: ‘Determining the bistability parameter ranges of artificially induced lac operon using root-locus method’, Comput. Biol. Med., 2015, 61, pp. 7591.
    29. 29)
      • 32. Purvis, J., Lahav, G.: ‘Encoding and decoding cellular information through signaling dynamics’, Cell, 2013, 152, pp. 945956.
    30. 30)
      • 10. Demirkran, G., Demir, G.K., Güzeliş, C.: ‘Two-dimensional polynomial type canonical relaxation oscillator model for p53 dynamics’, IET Syst. Biol., 2018, 12, pp. 2638.
    31. 31)
      • 17. Strogatz, S.H.: ‘Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering’ (CRC Press, USA, 1994, 1st edn).
    32. 32)
      • 27. Toettcher, J., Loewer, A., Ostheimer, G., et al: ‘Distinct mechanisms act in concert to mediate cell cycle arrest’, Proc. Natl. Acad. Sci., 2009, 106, pp. 785790.
    33. 33)
      • 14. Avcu, N., Pekergin, N., Pekergin, F., et al: ‘Aggregation for computing multi-modal stationary distributions in 1-D gene regulatory networks’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2018, 15, pp. 813827.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2019.0043
Loading

Related content

content/journals/10.1049/iet-syb.2019.0043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address