Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Drug repositioning via matrix completion with multi-view side information

In the process of drug discovery and disease treatment, drug repositioning is broadly studied to identify biological targets for existing drugs. Many methods have been proposed for drug–target interaction prediction by taking into account different kinds of data sources. However, most of the existing methods only use one side information for drugs or targets to predict new targets for drugs. Some recent works have improved the prediction accuracy by jointly considering multiple representations of drugs and targets. In this work, the authors propose a drug–target prediction approach by matrix completion with multi-view side information (MCM) of drugs and proteins from both structural view and chemical view. Different from existing studies for drug–target prediction, they predict drug–target interaction by directly completing the interaction matrix between them. The experimental results show that the MCM method could obtain significantly higher accuracies than the comparison methods. They finally report new drug–target interactions for 26 FDA-approved drugs, and biologically discuss these targets using existing references.

References

    1. 1)
      • 9. Zheng, X., Ding, H., Mamitsuka, H., et al: ‘Collaborative matrix factorization with multiple similarities for predicting drug–target interactions’. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Chicago, 2013, pp. 10251033.
    2. 2)
      • 21. Zhao, P., Jiang, Y., Zhou, Z.: ‘Multi-view matrix completion for clustering with side information’. Pacific-Asia Conf. on Knowledge Discovery and Data Mining, Halifax, Nova Scotia - Canada, 2017, pp. 403415.
    3. 3)
      • 34. Jain, P., Dhillon, I.S.: ‘Provable inductive matrix completion’, CoRR, abs/1306.0626, 2013.
    4. 4)
      • 14. Lanckriet, G., Cristianini, N., Bartlett, P., et al: ‘Learning the kernel matrix with semidefinite programming’, J. Mach. Learn. Res., 2004, 5, (1), pp. 2772.
    5. 5)
      • 44. Rompay, A., Norda, A., Lindén, K., et al: ‘Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases’, Mol. Pharmacol., 2001, 59, (5), pp. 11811186.
    6. 6)
      • 46. Wang, Y., Ma, X., Zhang, Y., et al: ‘ITPKA gene body methylation regulates gene expression and serves as an early diagnostic marker in lung and other cancers’, J. Thorac. Oncol., 2016, 11, (9), pp. 14691481.
    7. 7)
      • 17. Tang, W., Lu, Z., Dhillon, I.: ‘Clustering with multiple graphs’. IEEE Int. Conf. on Data Mining, Sparks, NV, United States, 2009, pp. 10161021.
    8. 8)
      • 41. Choi, J.Y., Abel, J., Neuhaus, T., et al: ‘Role of alcohol and genetic polymorphisms of CYP2E1 and ALDH2 in breast cancer development’, Pharmacogenetics, 2003, 13, (2), pp. 6772.
    9. 9)
      • 30. Smith, T.F., Waterman, M.S.: ‘Identification of common molecular subsequences’, J. Mol. Biol., 1981, 147, (1), pp. 195197.
    10. 10)
      • 39. Burzynski, S.R.: ‘Treatments for astrocytic tumors in children’, Pediatr. Drugs, 2006, 8, (3), pp. 167178.
    11. 11)
      • 15. Yu, S., Tranchevent, L., Liu, X., et al: ‘Optimized data fusion for kernel k-means clustering’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (5), pp. 10311039.
    12. 12)
      • 29. Hattori, M., Okuno, Y., Goto, S., et al: ‘Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways’, J. Am. Chem. Soc., 2003, 125, (39), pp. 1185311865.
    13. 13)
      • 3. Bleakley, K., Yamanishi, Y.: ‘Supervised prediction of drug–target interactions using bipartite local models’, Bioinformatics, 2009, 25, (18), pp. 23972403.
    14. 14)
      • 38. Wan, F., Rahman, K., Nafi, S., et al: ‘Overexpression of DNA methyltransferase 1 (DNMT1) protein in astrocytic tumour and its correlation with O6-methylguanine-DNA methyltransferase (MGMT) expression’, Int. J. Clin. Exp. Pathol., 2015, 8, (6), p. 6095.
    15. 15)
      • 20. Wang, B., Mezlini, A., Demir, F., et al: ‘Similarity network fusion for aggregating data types on a genomic scale’, Nat. Methods, 2014, 11, (3), pp. 333337.
    16. 16)
      • 16. Tilman, L., Joachim, M.: ‘Fusion of similarity data in clustering’. Proc. of Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2006.
    17. 17)
      • 6. Li, L., Zhou, X., Ching, W., et al: ‘Predicting enzyme targets for cancer drugs by profiling human metabolic reactions in NCI-60 cell lines’, BMC Bioinformatics, 2010, 11, (1), p. 501.
    18. 18)
      • 8. Ding, H., Takigawa, I., Mamitsuka, H., et al: ‘Similarity-based machine learning methods for predicting drug–target interactions: a brief review’, Brief. Bioinform., 2014, 15, (5), pp. 734747.
    19. 19)
      • 19. Kumar, A., Rai, P.: ‘Co-regularized multi-view spectral clustering’. Int. Conf. on Neural Information Processing Systems, Granada Spain, 2011, pp. 14131421.
    20. 20)
      • 32. Reinhold, C., Sunshine, M., Liu, H., et al: ‘Cellminer: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set’, Eur. J. Cancer, 2012, 48, (14), pp. 8282.
    21. 21)
      • 43. Zhong, M., Clarke, S., Khan, S.: ‘Abstract 474: the essential role of giα2 in prostate cancer progression’, Cancer Res., 2012, 72, (8 Supplement), pp. 474474.
    22. 22)
      • 23. Li, L., Cai, M.: ‘Drug target prediction by multi-view low rank embedding’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2017, PP, (99), pp. 11.
    23. 23)
      • 24. Lu, C., Yang, M., Luo, F., et al: ‘Prediction of lncRNA-disease associations based on inductive matrix completion’, Bioinformatics, 2018, 34, pp. 33573364.
    24. 24)
      • 40. Varley, E., Gertz, J., Roberts, S., et al: ‘Recurrent read-through fusion transcripts in breast cancer’, Breast Cancer Res. Treat., 2014, 146, (2), pp. 287297.
    25. 25)
      • 31. Shankavaram, T., Reinhold, C., Nishizuka, S., et al: ‘Transcript and protein expression profiles of the nci-60 cancer cell panel: an integromic microarray study’, Mol. Cancer Ther., 2007, 6, (3), pp. 820832.
    26. 26)
      • 11. Shen, R., Mo, Q., Schultz, N., et al: ‘Integrative subtype discovery in glioblastoma using iCluster’, Plos One, 2012, 7, (4), p. e35236.
    27. 27)
      • 22. Li, L.: ‘MPGraph: multi-view penalised graph clustering for predicting drug–target interactions’, IET Syst. Biol., 2014, 8, (2), pp. 6773.
    28. 28)
      • 28. Kanehisa, M., Goto, S., Hattori, M., et al: ‘From genomics to chemical genomics: new developments in KEGG’, Nucleic Acids Res., 2006, 34, (Database issue), p. D354.
    29. 29)
      • 33. Knox, C., Law, V., Jewison, T., et al: ‘Drugbank 3.0: a comprehensive resource for ‘omics’ research on drugs’, Nucleic Acids Res., 2010, 39, pp. D1035D1041.
    30. 30)
      • 42. Yi, H., Geng, L., Black, A., et al: ‘The miR-487b-3p/GRM3/TGFβ signaling axis is an important regulator of colon cancer tumorigenesis’, Oncogene, 2017, 36, (24), pp. 34773489.
    31. 31)
      • 2. Yamanishi, Y., Araki, M., Gutteridge, A., et al: ‘Prediction of drug–target interaction networks from the integration of chemical and genomic spaces’, Bioinformatics, 2008, 24, (13), pp. i232i240.
    32. 32)
      • 25. Natarajan, N., Dhillon, I.: ‘Inductive matrix completion for predicting gene–disease associations’, Bioinformatics, 2014, 30, (12), pp. i60i68.
    33. 33)
      • 47. Li, N., Dhar, S., Chen, T., et al: ‘JARID1D is a suppressor and prognostic marker of prostate cancer invasion and metastasis’, Cancer Res., 2016, 76, (4), p. 831.
    34. 34)
      • 27. Chen, X., Wang, L., Qu, J., et al: ‘Predicting mirna-disease association based on inductive matrix completion’, Bioinformatics, 2018, 34, (24), pp. 42564265.
    35. 35)
      • 4. Mizutani, S., Pauwels, E., Stoven, V., et al: ‘Relating drugprotein interaction network with drug side effects’, Bioinformatics, 2012, 28, (18), p. i522.
    36. 36)
      • 13. Gönen, M., Margolin, A.: ‘Localized data fusion for kernel k-means clustering with application to cancer biology’, Adv. Neural. Inf. Process. Syst., 2014, pp. 13051313.
    37. 37)
      • 45. Schumacher, F., Wang, Z., Skotheim, R., et al: ‘Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23’, Hum. Mol. Genet., 2013, 22, (13), pp. 27482753.
    38. 38)
      • 35. Toh, K., Yun, S.: ‘An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems’, Pac. J. Optim., 2010, 6, (3), pp. 615640.
    39. 39)
      • 26. Li, R., Dong, Y., Kuang, Q., et al: ‘Inductive matrix completion for predicting adverse drug reactions (ADRs) integrating drug–target interactions’, Chemometr. Intell. Lab. Syst., 2015, 144, pp. 7179.
    40. 40)
      • 37. Hagelkrüys, A.: ‘The role of hdac1 and dnmt1 in erythropoiesis and brain development’, Nat. Methods, 2009, 11, (3), pp. 333337.
    41. 41)
      • 5. Chen, J., Zhang, S.: ‘Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data’, Bioinformatics, 2016, 32, (11), pp. 17241732.
    42. 42)
      • 18. Song Chen, C., Chuang, Y., Huang, H.: ‘Affinity aggregation for spectral clustering’. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, Rhode Island, 2012, pp. 773780.
    43. 43)
      • 1. Liu, Y., Wu, M., Miao, C., et al: ‘Neighborhood regularized logistic matrix factorization for drug–target interaction prediction’, PLoS Comput. Biol., 2016, 12, (2), p. e1004760.
    44. 44)
      • 36. Cai, J., Candès, J., Shen, Z.: ‘A singular value thresholding algorithm for matrix completion’, SIAM J. Optim., 2008, 20, (4), pp. 19561982.
    45. 45)
      • 12. Mo, Q., Wang, S., Seshan, V., et al: ‘Pattern discovery and cancer gene identification in integrated cancer genomic data’, Proc. Natl. Acad. Sci. USA, 2013, 110, (11), pp. 42454250.
    46. 46)
      • 48. Su, C., Chang, Y., Yang, C., et al: ‘The opposite prognostic effect of NDUFS1 and NDUFS8 in lung cancer reflects the oncojanus role of mitochondrial complex I’, Sci. Rep., 2016, 6, p.31357.
    47. 47)
      • 7. Dorothea, E., Alexander, I., Olga, P., et al: ‘Drug target prediction and reposi- tioning using an integrated network-based approach’, Plos One, 2013, 8, (4), pp. e60618e60618.
    48. 48)
      • 10. Li, L., He, X., Borgwardt, K.: ‘Multi-target drug repositioning by bipartite blockwise sparse multi-task learning’, BMC Syst. Biol., 2018, 12, (4), p. 55.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2018.5129
Loading

Related content

content/journals/10.1049/iet-syb.2018.5129
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address