http://iet.metastore.ingenta.com
1887

access icon openaccess Identification of a time-varying intracellular signalling model through data clustering and parameter selection: application to NF-B signalling pathway induced by LPS in the presence of BFA

Loading full text...

Full text loading...

/deliver/fulltext/iet-syb/13/4/IET-SYB.2018.5079.html;jsessionid=2dk0qvg7q5vnr.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-syb.2018.5079&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Klipp, E., Liebermeister, W.: ‘Mathematical modeling of intracellular signaling pathways’, BMC Neurosci., 2006, 7, p. S10.
    2. 2)
      • 2. Kitano, H.: ‘System biology: a brief overview’, Science, 2002, 295, pp. 16621664.
    3. 3)
      • 3. Singh, A., Jayaraman, A., Hahn, J.: ‘Modeling regulatory mechanisms in IL-6 signal transduction in hepatocytes’, Biotechnol. Bioeng., 2006, 95, pp. 850862.
    4. 4)
      • 4. Moya, C., Huang, Z., Cheng, P., et al: ‘Investigation of IL-6 and IL-10 signalling via mathematical modelling’, IET Syst. Biol., 2011, 5, pp. 1526.
    5. 5)
      • 5. Hoffmann, A., Levchenko, A., Scott, M.L., et al: ‘The IκB-NF-κB signaling module: temporal control and selective gene activation’, Science, 2002, 298, pp. 12411245.
    6. 6)
      • 6. Lipniacki, T., Paszek, P., Brasier, A.R., et al: ‘Mathematical model of NF-κB regulatory module’, J. Theor. Biol., 2004, 228, pp. 195215.
    7. 7)
      • 7. Swameye, I., Müller, T.G., Timmer, J., et al: ‘Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling’, Proc. Natl. Acad. Sci., 2003, 100, pp. 10281033.
    8. 8)
      • 8. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., et al: ‘Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors’, Nat. Biotechnol., 2002, 20, pp. 370375.
    9. 9)
      • 9. Pahl, H.L.: ‘Activators and target genes of Rel/NF-κB transcription factors’, Oncogene, 1999, 18, pp. 68536866.
    10. 10)
      • 10. Gadkar, K.G., Gunawan, R., Doyle, F.J.: ‘Iterative approach to model identification of biological networks’, BMC Bioinform., 2005, 6, p. 155.
    11. 11)
      • 11. Balsa-Canto, E., Alonso, A.A., Banga, J.R.: ‘An iterative identification procedure for dynamic modeling of biochemical networks’, BMC Syst. Biol., 2010, 4, p. 11.
    12. 12)
      • 12. Rodriguez-Fernandez, M., Rehberg, M., Kremling, A., et al: ‘Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems’, BMC Syst. Biol., 2013, 7, p. 76.
    13. 13)
      • 13. Penas, D.R., Henriques, D., Gonzalez, P., et al: ‘A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology’, PLoS ONE, 2017, 12, p. e0182186.
    14. 14)
      • 14. Maurya, M.R., Bornheimer, S.J., Venkatasubramanian, V., et al: ‘Mixed-integer nonlinear optimisation approach to coarse-graining biochemical networks’, IET Syst. Biol., 2008, 3, pp. 2439.
    15. 15)
      • 15. Verheijen, P.J.T.: ‘Model selection: an overview of practices in chemical engineering’, Comput. Aided Chem. Eng., 2003, 16, pp. 85104.
    16. 16)
      • 16. Boukouvala, F., Misener, R., Floudas, C.A.: ‘Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO’, Eur. J. Oper. Res., 2016, 252, pp. 701727.
    17. 17)
      • 17. Engelhardt, B., Fröhlich, H., Kschischo, M.: ‘Learning (from) the errors of a systems biology approach’, Sci. Rep., 2016, 6, p. 20772.
    18. 18)
      • 18. Lin, Z., Beck, M.B.: ‘On the identification of model structure in hydrological and environmental systems’, Water Resour. Res., 2007, 43, p. W02402.
    19. 19)
      • 19. Tiemann, C.A., Vanlier, J., Oosterveer, M.H., et al: ‘Parameter trajectory analysis to identify treatment effects of pharmacological interventions’, PLoS Comput. Biol., 2013, 9, p. e1003166.
    20. 20)
      • 20. Balsa-Canto, E., Alonso, A.A., Banga, J.R.: ‘Computational procedures for optimal experimental design in biological systems’, IET Syst. Biol., 2007, 2, pp. 163172.
    21. 21)
      • 21. Lee, D., Ding, Y., Jayaraman, A., et al: ‘Mathematical modeling and parameter estimation of intracellular signaling pathway: application to LPS-induced NFκB activation and TNFα production in macrophages’, Processes, 2018, 6, p. 21.
    22. 22)
      • 22. Dobre, S., Bastogne, T., Profeta, C., et al: ‘Limits of variance-based sensitivity analysis for non-identifiability testing in high dimensional dynamic models’, Automatica, 2012, 48, pp. 27402749.
    23. 23)
      • 23. Hasenauer, J., Waldherr, S., Doszczak, M., et al: ‘Identification of models of heterogeneous cell populations from population snapshot data’, BMC Bioinform., 2011, 12, p. 125.
    24. 24)
      • 24. Lillacci, G., Khammash, M.: ‘A distribution-matching method for parameter estimation and model selection in computational biology’, Int. J. Robust Nonlinear Control, 2012, 22, pp. 10651081.
    25. 25)
      • 25. Raue, A., Kreutz, C., Maiwald, T., et al: ‘Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood’, Bioinformatics, 2009, 25, pp. 19231929.
    26. 26)
      • 26. Narasingam, A., Siddhamshetty, P., Kwon, J.S.: ‘Temporal clustering for order reduction of nonlinear parabolic PDE systems with time-dependent spatial domains: application to a hydraulic fracturing process’, AIChE J., 2017, 63, pp. 38183831.
    27. 27)
      • 27. Jung, Y., Park, H., Du, D., et al: ‘A decision criterion for the optimal number of clusters in hierarchical clustering’, J. Glob. Optim., 2003, 25, pp. 91111.
    28. 28)
      • 28. Tan, M.P., Broach, J.R., Floudas, C.A.: ‘A novel clustering approach and prediction of optimal number of clusters: global optimum search with enhanced positioning’, J. Glob. Optim., 2007, 39, pp. 323346.
    29. 29)
      • 29. Kravaris, C., Hahn, J., Chu, Y.: ‘Advances and selected recent developments in state and parameter estimation’, Comput. Chem. Eng., 2013, 51, pp. 111123.
    30. 30)
      • 30. Pohjanpalo, H.: ‘System identifiability based on the power series expansion of the solution’, Math. Biosci., 1978, 41, pp. 2133.
    31. 31)
      • 31. Ljung, L., Glad, T.: ‘On global identifiability for arbitrary model parametrizations’, Automatica, 1994, 30, pp. 265276.
    32. 32)
      • 32. Vajda, S., Godfrey, K.R., Rabitz, H.: ‘Similarity transformation approach to identifiability analysis of nonlinear compartmental models’, Math. Biosci., 1989, 93, pp. 217246.
    33. 33)
      • 33. Kiparissides, A., Koutinas, M., Kontoravdi, C., et al: ‘Closing the loop’ in biological systems modeling-from the in silico to the in vitro’, Automatica, 2011, 47, pp. 11471155.
    34. 34)
      • 34. Chu, Y., Hahn, J.: ‘Parameter set selection for estimation of nonlinear dynamic systems’, AIChE J., 2007, 53, pp. 28582870.
    35. 35)
      • 35. Lee, D., Singla, A., Wu, H., et al: ‘An integrated numerical and experimental framework for modeling of CTB and GD1b ganglioside binding kinetics’, AIChE J., 2018, 64, pp. 38823893.
    36. 36)
      • 36. Morris, M.D.: ‘Factorial sampling plans for preliminary computational experiments’, Technometrics, 1991, 33, pp. 161174.
    37. 37)
      • 37. Sobol, I.M.: ‘Global sensitivity indices for nonlinear mathematical models and their Monte-Carlo estimates’, Math. Comput. Simul., 2001, 55, pp. 271280.
    38. 38)
      • 38. Chu, Y., Jayaraman, A., Hahn, J.: ‘Parameter sensitivity analysis of IL-6 signalling pathways’, IET Syst. Biol., 2007, 1, pp. 342352.
    39. 39)
      • 39. Saltelli, A., Ratto, M., Tarantola, S., et al: ‘Sensitivity analysis for chemical models’, Chem. Rev., 2005, 105, pp. 28112827.
    40. 40)
      • 40. Saltelli, A., Gatelli, D., Campolongo, F., et al: ‘Global sensitivity analysis: the primer’ (John Wiley & Sons, 2008).
    41. 41)
      • 41. Homma, T., Saltelli, A.: ‘Importance measures in global sensitivity analysis of nonlinear models’, Reliab. Eng. Syst. Saf., 1996, 52, pp. 117.
    42. 42)
      • 42. Kontoravdi, C., Asprey, S.P., Pistikopoulos, E.N., et al: ‘Application of global sensitivity analysis to determine goals for design of experiments: an example study on antibody-producing cell cultures’, Biotechnol. Prog., 2005, 21, pp. 11281135.
    43. 43)
      • 43. Ghosh, G., Wang, V.Y., Huang, D., et al: ‘NF-κB regulation: lessons from structures’, Immunol. Rev., 2012, 246, pp. 3658.
    44. 44)
      • 44. Parameswaran, N., Patial, S.: ‘Tumor necrosis factor-α signaling in macrophages’, Crit. Rev. Eukaryot. Gene Expr., 2010, 20, pp. 87103.
    45. 45)
      • 45. Maiti, S., Dai, W., Alaniz, R.C., et al: ‘Mathematical modeling of pro- and anti-inflammatory signaling in macrophages’, Processes, 2015, 3, pp. 118.
    46. 46)
      • 46. Kawai, T., Akira, S.: ‘The role of pattern-recognition receptors in innate immunity: update on toll-like receptors’, Nat. Immunol., 2010, 11, pp. 373384.
    47. 47)
      • 47. Pahl, H.L., Baeuerle, P.A.: ‘A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF- κB’, EMBO J., 1995, 14, pp. 25802588.
    48. 48)
      • 48. Smith, J.A.: ‘Regulation of cytokine production by the unfolded protein response; implications for infection and autoimmunity’, Front. Immunol., 2018, 9, p. 422.
    49. 49)
      • 49. Chardin, P., McCormick, F.: ‘Brefeldin A: the advantage of being uncompetitive’, Cell, 1999, 97, pp. 153155.
    50. 50)
      • 50. Erguler, K., Pieri, M., Deltas, C.: ‘A mathematical model of the unfolded protein stress response reveals the decision mechanism for recovery, adaptation and apoptosis’, BMC Syst. Biol., 2013, 7, p. 16.
    51. 51)
      • 51. Diedrichs, D.R., Gomez, J.A., Huang, C., et al: ‘A data entrained computational model for testing the regulatory logic of the vertebrate unfolded protein response’, Mol. Biol. Cell, 2018, 29, pp. 15021517.
    52. 52)
      • 52. Cho, H., Wu, M., Zhang, L., et al: ‘Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells’, BMC Syst. Biol., 2013, 7, p. 9.
    53. 53)
      • 53. Lipniacki, T., Kimmel, M.: ‘Deterministic and stochastic models of NF-κB pathway’, Cardiovasc. Toxicol., 2007, 7, pp. 215234.
    54. 54)
      • 54. Cheong, R., Hoffmann, A., Levchenko, A.: ‘Understanding NF-κB signaling via mathematical modeling’, Mol. Syst. Biol., 2008, 4, p. 192.
    55. 55)
      • 55. Williams, R.A., Timmis, J., Qwarnstrom, E.E.: ‘Computational models of the NF-κB signalling pathway’, Computation, 2014, 2, (4), pp. 131158.
    56. 56)
      • 56. Junkin, M., Kaestli, A.J., Cheng, Z., et al: ‘High-content quantification of single-cell immune dynamics’, Cell. Rep., 2016, 15, pp. 411422.
    57. 57)
      • 57. Werner, S.L., Kearns, J.D., Zadorozhnaya, V., et al: ‘Encoding NF-κB temporal control in response to TNF: distinct roles for the negative regulators IκBα and A20’, Genes Dev., 2008, 22, pp. 20932101.
    58. 58)
      • 58. Caldwell, A.B., Cheng, Z., Vargas, J.D., et al: ‘Network dynamics determine the autocrine and paracrine signaling fucntions of TNF’, Genes Dev., 2014, 28, pp. 21202133.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2018.5079
Loading

Related content

content/journals/10.1049/iet-syb.2018.5079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address