http://iet.metastore.ingenta.com
1887

access icon openaccess Classification of drug molecules for oxidative stress signalling pathway

Loading full text...

Full text loading...

/deliver/fulltext/iet-syb/13/5/IET-SYB.2018.5078.html;jsessionid=4u3eet9lc1asb.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-syb.2018.5078&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Kourtis, N., Tavernarakis, N.: ‘Cellular stress response pathways and ageing: intricate molecular relationships’, EMBO J., 2011, 30, (13), pp. 25202531.
    2. 2)
      • 2. Welch, W.J.: ‘How cells respond to stress’, Sci. Am., 1993, 268, (5), pp. 5664.
    3. 3)
      • 3. Schneiderman, N., Ironson, G., Siegel, S.D.: ‘Stress and health: psychological, behavioral, and biological determinants’, Annu. Rev. Clin. Psychol., 2005, 1, pp. 607628.
    4. 4)
      • 4. Stress-Response: Available at http://gothealternativeway.com/index.php/ 2017/06/07/best-stress-reducing-anxiety-relieving-products. Triggers to stress response, accessed on 5 May 2018.
    5. 5)
      • 5. Soti, C., Csermely, P.: ‘Protein stress and stress proteins: implications in aging and disease’, EMBO J., 2007, 32, (511), pp. 02505991.
    6. 6)
      • 6. Tox21.: Available at https://tripod.nih.gov/tox21/challenge/data.jsp. Tox21 data challenge 2014, accessed on 5 May 2018.
    7. 7)
      • 7. Nguyen, T., Nioi, P., Pickett, C.B.: ‘The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress’, J. Biol. Chem., 2009, 284, (20), pp. 1329113295.
    8. 8)
      • 8. Elochukwu, C.: ‘Generation and reaction of free radicals in the human body: a major cause of aging and chronic degenerative diseases’, ECronicon, 2015, 1, (3), pp. 132136.
    9. 9)
      • 9. Abramov, A., Gandhi, S.: ‘The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress’, EMBO J., 2012, 2012, (428010), p. 11.
    10. 10)
      • 10. Leung, M.K.K., Delong, A., Alipanahi, B., et al: ‘Machine learning in genomic medicine: a review of computational problems and data sets’, Proc. IEEE, 2016, 104, (1), pp. 176197.
    11. 11)
      • 11. Magoulas, G.D., Prentza, A.: ‘Machine learning in medical applications’, in Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds.): ‘Machine Learning and Its Applications. ACAI 1999. Lecture Notes in Computer Science’, vol2049, (Springer, Berlin, Heidelberg, 1999).
    12. 12)
      • 12. Soni, J., Ansari, U., Sharma, D., et al: ‘Predictive data mining for medical diagnosis: an overview of heart disease prediction’, Int. J. Comput. Appl., 2011, 17, (8), pp. 4348.
    13. 13)
      • 13. Libbrecht, M.W., Noble, W.S.. ‘Machine learning applications in genetics and genomics’, Nat. Rev. Genetics, 2015, 16, (6), p. 321.
    14. 14)
      • 14. Tan, J., Dan, H., Hao, Z., et al: ‘From machine learning to deep learning: progress in machine intelligence for rational drug discovery’, Drug discovery today, 2017, 22, (11), pp. 16801685.
    15. 15)
      • 15. Khan, A.U., Danishuddin, M.: ‘Structure based virtual screening to discover putative drug candidates: necessary considerations and successful case studies’, Methods, 2015, 71, pp. 135145.
    16. 16)
      • 16. de la Villehuchet, A.M., Brack, M., Dreyfus, G., et al: ‘A machine-learning approach to the prediction of oxidative stress in chronic inflammatory disease’, Redox Rep., 2009, 14, (1), pp. 2333.
    17. 17)
      • 17. Segler, M.H.S., Kogej, T., Tyrchan, C., et al: ‘Generating focused molecule libraries for drug discovery with recurrent neural networks,ACS Cent. Sci., 2017, 4, (1), pp. 120131.
    18. 18)
      • 18. Singh, H., Rana, P.S., Singh, U.: ‘Prediction of drug synergy in cancer using ensemble-based machine learning techniques’, Mod. Phys. Lett. B, 2018, 32, (11), p. 1850132.
    19. 19)
      • 19. Schneider, G.: ‘Automating drug discovery’, Nat. Rev. Drug Discov., 2017, 17, (2), p. 97.
    20. 20)
      • 20. Dao, F.Y., Yang, H., Su, Z.-D., et al: ‘Recent advances in conotoxin classification by using machine learning methods’, Molecules, 2017, 22, (7), p. 1057.
    21. 21)
      • 21. Yuan, L.-F., Ding, C., Guo, S.-H., et al: ‘Prediction of the types of ion channel-targeted conotoxins based on radial basis function network’, Toxicol. in Vitro, 2013, 27, (2), pp. 852856.
    22. 22)
      • 22. Zhang, Q., Yan, L., Wu, Y., et al: ‘A ternary classification using machine learning methods of distinct estrogen receptor activities within a large collection of environmental chemicals’, Sci. Total Environ., 2017, 580, pp. 12681275.
    23. 23)
      • 23. Peng, Z., Yang, B., Ren, H.: ‘Research on KDD process model and an improved algorithm’. Int. Joint Conf. on Artificial Intelligence, 2009, pp. 113115.
    24. 24)
      • 24. ARE.: Available at https://pubchem.ncbi.nlm.nih.gov/bioassay/743219. ARE signalling pathway, accessed on 5 May 2018.
    25. 25)
      • 25. PaDEL.: Available at http://www.yapcwsoft.com/dd/padeldescriptor/. Padel descriptor, accessed on 5 May 2018.
    26. 26)
      • 26. NCBI.: Available at https://pubchem.ncbi.nlm.nih.gov/bioassay/743040. National Center for Biotechnology Information, accessed on 5 May 2018.
    27. 27)
      • 27. Khalid, S., Khalil, T., Nasreen, S.: ‘A survey of feature selection and feature extraction techniques in machine learning’. Science and Information Conf. (SAI), 2014, pp. 372378.
    28. 28)
      • 28. FSelector.: Available at https://cran.r-project.org/package=fselector. Feature selection using FSelector, accessed on 5 May 2018.
    29. 29)
      • 29. Hall, M.A.: ‘Correlation-based feature selection for machine learning’, 1999.
    30. 30)
      • 30. Chawla, N.V., Bowyer, K.W., Hall, L.O., et al: ‘Smote: synthetic minority over-sampling technique’, J. Artif. Intell. Res., 2002, 16, pp. 321357.
    31. 31)
      • 31. Huang, F., Xie, G., Xiao, R.: ‘Research on ensemble learning’. Int. Conf. on Artificial Intelligence and Computational Intelligence, 2009, vol. 3, pp. 249252.
    32. 32)
      • 32. ADABoost.: Available at https://cran.r-project.org/package=ada. ADA Boost, accessed on 5 May 2018.
    33. 33)
      • 33. DecisionTree.: Available at https://cran.r-project.org/package=rpart. Decision tree, accessed on 5 May 2018.
    34. 34)
      • 34. LinearModel: Available at https://cran.r-project.org/package=car. Linear model, accessed on 5 May 2018.
    35. 35)
      • 35. NeuralNetwork.: Available at https://cran.r-project.org/package=nnet. Neural network, accessed on 5 May 2018.
    36. 36)
      • 36. RandomForest.: Available at https://cran.r-project.org/package=randomforest. Random forest, accessed on 5 May 2018.
    37. 37)
      • 37. SVM.: Available at https://cran.r-project.org/package=e1071. Support vector machine, accessed on 5 May 2018.
    38. 38)
      • 38. Hand, D.J.: ‘Measuring classifier performance: a coherent alternative to the area under the roc curve’, Mach. Learn., 2009, 77, (1), pp. 103123.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2018.5078
Loading

Related content

content/journals/10.1049/iet-syb.2018.5078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address