http://iet.metastore.ingenta.com
1887

Study of cohabitation and interconnection effects on normal and leukaemic stem cells dynamics in acute myeloid leukaemia

Study of cohabitation and interconnection effects on normal and leukaemic stem cells dynamics in acute myeloid leukaemia

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

On the basis of recent studies, understanding the intimate relationship between normal and leukaemic stem cells is very important in leukaemia treatment. The authors’ aim in this work is to clarify and assess the effect of coexistence and interconnection phenomenon on the healthy and cancerous stem cell dynamics. To this end, they perform the analysis of two time-delayed stem cell models in acute myeloid leukaemia. The first model is based on decoupled healthy and cancerous stem cell populations (i.e. there is no interaction between cell dynamics) and the second model includes interconnection between both population's dynamics. By using the positivity of both systems, they build new linear functions that permit to derive global stability conditions for each model. Moreover, knowing that most common types of haematological diseases are characterised by the existence of oscillations, they give conditions for the existence of a limit cycle (oscillations) in a particularly interesting healthy situation based on Poincare–Bendixson theorem. The obtained results are simulated and interpreted to be significant in understanding the effect of interconnection and would lead to an improvement in leukaemia treatment.

References

    1. 1)
      • 1. Olivier, B.G., Swat, M.J., Moné, M.J.: ‘Modeling and simulation tools: from systems biology to systems medicine’, Meth. Mol. Biol. Syst. Med., 2016, 63, pp. 441463.
    2. 2)
      • 2. Singh, V.: ‘Modelling methodologies for systems biology’, Syst. Synth. Biol., 2014, pp. 4362.
    3. 3)
      • 3. Lecca, P., Laurenzi, I., Jordan, F.: ‘Modelling in systems biology’, Deterministic Stoch. Modeling Biochem. Syst. Biol., 2013, pp. 117180.
    4. 4)
      • 4. Jan, M., Chao, M.P., Cha, A.C., et al: ‘Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker’, Proc. Natl. Acad. Sci., 2011, 108, (12), pp. 50095014.
    5. 5)
      • 5. Clapp, G., Levy, D.: ‘A review of mathematical models for leukemia and lymphoma’, Drug Discov. Today Dis. Models, 2015, 16, pp. 16.
    6. 6)
      • 6. Jayachandran, D., Rundell, A.E., Hannemann, R.E., et al: ‘Optimal chemotherapy for leukemia: a model-based strategy for individualized treatment’, PLoS One, 2014, 9, (10), pp. 118.
    7. 7)
      • 7. Zenati, A., Chakir, M., Tadjine, M., et al: ‘Global stability analysis of strictly positive steady state for a surviving hematopoietic stem cells models’. American Control Conf., Milwaukee, USA, 27–29 June 2018.
    8. 8)
      • 8. Foley, C., Mackey, M.C.: ‘Dynamic hematological disease: a review’, J. Math. Biol., 2008, 58, (1–2), pp. 285322.
    9. 9)
      • 9. Crowell, H.L., Maclean, A.L., Stumpf, M.P.: ‘Feedback mechanisms control coexistence in a stem cell model of acute myeloid leukaemia’, J. Theor. Biol., 2016, 401, pp. 4353.
    10. 10)
      • 10. Dick, J.E., Lapidot, T.: ‘Biology of normal and acute myeloid leukemia stem cells’, Int. J. Hematol., 2005, 82, (5), pp. 389396.
    11. 11)
      • 11. Pietras, E.M., Warr, M.R., Passegué, E.: ‘Cell cycle regulation in hematopoietic stem cells’, J. Cell Biol., 2011, 195, (5), pp. 709720.
    12. 12)
      • 12. Solary, E., Bernard, O.A., Tefferi, A., et al: ‘The ten-eleven translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases’, Leukemia, 2013, 28, (3), pp. 485496.
    13. 13)
      • 13. Hirsch, P., Zhang, Y., Tang, R., et al: ‘Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia’, Nat. Commun., 2016, 7, p. 12475.
    14. 14)
      • 14. Klco, J.M., Spencer, D.H., Miller, C.A., et al: ‘Functional heterogeneity of genetically defined subclones in acute myeloid leukemia’, Cancer Cell, 2014, 25, (3), pp. 379392.
    15. 15)
      • 15. Stiehl, T., Lutz, C., Marciniak-Czochra, A.: ‘Emergence of heterogeneity in acute leukemias’, Biol. Direct, 2016, 11, (1), pp. 119.
    16. 16)
      • 16. Avila, J.L., Bonnet, C., Clairambault, J., et al: ‘Analysis of a new model of cell population dynamics in acute myeloid leukemia’, Delay Syst. Adv. Delays Dyn., 2014, 1, pp. 315328.
    17. 17)
      • 17. Janz, S., Potter, M., Rabkin, C.S.: ‘Lymphoma- and leukemia-associated chromosomal translocations in healthy individuals’, Genes Chromosomes Cancer, 2003, 36, (3), pp. 211223.
    18. 18)
      • 18. Pronier, E., Almire, C., Mokrani, H., et al: ‘Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors’, Blood, 2011, 118, (9), pp. 25512555.
    19. 19)
      • 19. Jan, M., Majeti, R.: ‘Clonal evolution of acute leukemia genomes’, Oncogene, 2012, 32, (2), pp. 135140.
    20. 20)
      • 20. Patnaik, M.M.: ‘The importance of FLT3 mutational analysis in acute myeloid leukemia’, Leuk. Lymphoma, 2017, pp. 114.
    21. 21)
      • 21. Smith, B.D.: ‘Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia’, Blood, 2004, 103, (10), pp. 36693676.
    22. 22)
      • 22. Heydt, Q., Larrue, C., Saland, E., et al: ‘Oncogenic FLT3-ITD supports autophagy via ATF4 in acute myeloid leukemia’, Oncogene, 2017, 37, (6), pp. 787797.
    23. 23)
      • 23. Catlin, S.N.: ‘The kinetics of clonal dominance in myeloproliferative disorders’, Blood, 2005, 106, (8), pp. 26882692.
    24. 24)
      • 24. Stiehl, T., Baran, N., Ho, A.D., et al: ‘Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival’, Cancer Res., 2015, 75, (6), pp. 940949.
    25. 25)
      • 25. Mackey, M. C.: ‘Unified hypothesis for the origin of aplastic anaemia and periodic hematopoiesis’, Blood, 1978, 51, (5), pp. 941956.
    26. 26)
      • 26. Adimy, M., Crauste, F., Marquet, C.: ‘Asymptotic behavior and stability switch for a mature-immature model of cell differentiation’, Nonlinear Anal. Real World Appl., 2010, 11, (4), pp. 29132929.
    27. 27)
      • 27. Avila, J., Bonnet, C., Clairambault, J., et al: ‘A new model of cell dynamics in acute myeloid leukemia involving distributed delays1’, IFAC Proc. Vol., 2012, 45, (14), pp. 5560.
    28. 28)
      • 28. Avila, J.L., Bonnet, C., Fridman, E., et al: ‘Stability analysis of PDEs modelling cell dynamics in acute myeloid leukemia’. 53rd IEEE Conf. Decision and Control, Los Angeles, USA, 2014.
    29. 29)
      • 29. Djema, W., Mazenc, F., Bonnet, C.: ‘Stability analysis and robustness results for a nonlinear system with distributed delays describing hematopoiesis’, Syst. Control Lett., 2017, 102, pp. 93101.
    30. 30)
      • 30. Fridman, E., Bonnet, C., Mazenc, F., et al: ‘Stability of the cell dynamics in acute myeloid leukemia’, Syst. Control Lett., 2016, 88, pp. 91100.
    31. 31)
      • 31. Özbay, H., Bonnet, C., Clairambault, J.: ‘Stability analysis of systems with distributed delays and application to hematopoietic cell maturation dynamics’. 47th IEEE Conf. Decision and Control, Cancun, Mexico, 2008.
    32. 32)
      • 32. De Souza, D.S., Antony, R. H.: ‘Dynamics of a mathematical hematopoietic stem-cell population model’, arXiv:1712.08308v1 [math.DS], 2017, pp. 132.
    33. 33)
      • 33. Özbay, H., Bonnet, C., Benjelloun, H., et al: ‘Stability analysis of cell dynamics in leukemia’, Math. Model. Nat. Phenom., 2012, 7, (1), pp. 203234.
    34. 34)
      • 34. Zenati, A., Chakir, M., Tadjine, M.: ‘Optimal control of a coupled model for healthy and cancerous cells dynamics in acute myeloid leukemia – a therapy approach’. 2017 Sixth Int. Conf. Systems and Control, Batna, Algeria, 2017.
    35. 35)
      • 35. Zenati, A., Chakir, M., Tadjine, M.: ‘Global stability analysis of healthy situation for a coupled model of healthy and cancerous cells dynamics in acute myeloid leukemia’, IFAC-PapersOnLine, 2017, 50, (1), pp. 1510315108.
    36. 36)
      • 36. Stiehl, T., Marciniak-Czochra, A.: ‘Mathematical modeling of leukemogenesis and cancer stem cell dynamics’, Math. Model. Nat. Phenom., 2012, 7, (1), pp. 166202.
    37. 37)
      • 37. Stiehl, T., Baran, N., Ho, A.D., et al: ‘Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse’, J. R. Soc. Interface, 2014, 11, (94), p. 20140079.
    38. 38)
      • 38. Wang, S., Schättler, H.: ‘Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity’, Math. Biosci. Eng., 2016, 13, (6), pp. 12231240.
    39. 39)
      • 39. Richard, J.-P.: ‘Time-delay systems: an overview of some recent advances and open problems’, Automatica, 2003, 39, (10), pp. 16671694.
    40. 40)
      • 40. Djema, W., Mazenc, F., Bonnet, C., et al: ‘Stability of a delay system coupled to a differential-difference system describing the coexistence of ordinary and mutated hematopoietic stem cells’. 2016 IEEE 55th Conf. Decision and Control, Las Vegas, USA, 2016.
    41. 41)
      • 41. Dingli, D., Michor, F.: ‘Successful therapy must eradicate cancer stem cells’, Stem Cells, 2006, 24, (12), pp. 26032610.
    42. 42)
      • 42. Ledzewicz, U., Schättler, H.: ‘Anti angiogenic therapy in cancer treatment as an optimal control problem’, SIAM J. Control Optim., 2007, 46, (3), pp. 10521079.
    43. 43)
      • 43. Avila, J., Bonnet, C., Özbay, H., et al: ‘A coupled model for healthy and cancerous cells dynamics in acute myeloid leukemia’, IFAC Proc. Vol., 2014, 47, (3), pp. 75297534.
    44. 44)
      • 44. Ngoc, P.H.A.: ‘Stability of positive differential systems with delay’, IEEE Trans. Autom. Control, 2013, 58, (1), pp. 203209.
    45. 45)
      • 45. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, Upper Saddle River, NJ, USA, 2002).
    46. 46)
      • 46. Cheng, D., Wang, J., Hu, X.: ‘An extension of LaSalles invariance principle and its application to multi-agent consensus’, IEEE Trans. Autom. Control, 2008, 53, (7), pp. 17651770.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2018.5026
Loading

Related content

content/journals/10.1049/iet-syb.2018.5026
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address