http://iet.metastore.ingenta.com
1887

Identifying cancer-related microRNAs based on subpathways

Identifying cancer-related microRNAs based on subpathways

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

MicroRNAs (miRNAs) are a class of small endogenous non-coding genes that play important roles in post-transcriptional regulation as well as other important biological processes. Accumulating evidence indicated that miRNAs were extensively involved in the pathology of cancer. However, determining which miRNAs are related to a specific cancer is problematic because one miRNA may target multiple genes and one gene may be targeted by multiple miRNAs. The authors proposed a new approach, named miR_SubPath, to identify cancer-associated miRNAs by three steps. The targeted genes were determined based on differentially expressed genes in significant dysfunctional subpathways. Then the candidate miRNAs were determined according to miRNA–genes associations. Finally, these candidate miRNAs were ranked based on their relations with some seed miRNAs in a functional similarity network. Results on real-world datasets showed that the proposed miR_SubPath method was more robust and could identify more cancer-related miRNAs than a prior approach, miR_Path, miR_Clust and Zhang's method.

References

    1. 1)
      • 1. Ambros, V.: ‘The functions of animal microRNAs’, Nature, 2004, 431, (7006), p. 350.
    2. 2)
      • 2. Bartel, D.P.: ‘MicroRNAs: genomics, biogenesis, mechanism, and function’, Cell, 2004, 116, (2), pp. 281297.
    3. 3)
      • 3. Esquela-Kerscher, A., Slack, F.J.: ‘Oncomirs-microRNAs with a role in cancer’, Nat. Rev. Cancer, 2006, 6, (4), pp. 259269.
    4. 4)
      • 4. Cheng, A.M., Byrom, M.W., Shelton, J., et al: ‘Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis’, Nucleic Acids Res., 2005, 33, (4), pp. 12901297.
    5. 5)
      • 5. Karp, X., Ambros, V.: ‘Developmental biology. Encountering microRNAs in cell fate signaling’, Science, 2005, 310, (5752), p. 1288.
    6. 6)
      • 6. Miska, E.A.: ‘How microRNAs control cell division, differentiation and death’, Curr. Opin. Genet. Develop., 2005, 15, (5), pp. 563568.
    7. 7)
      • 7. Calin, G.A., Croce, C.M.: ‘MicroRNA signatures in human cancers’, Nat. Rev. Cancer, 2006, 6, (11), p. 857.
    8. 8)
      • 8. Zhang, Z., Li, Z., Gao, C., et al: ‘miR-21 plays a pivotal role in gastric cancer pathogenesis and progression’, Lab. Invest., 2008, 88, (12), p. 1358.
    9. 9)
      • 9. Slaby, O., Svoboda, M., Fabian, P., et al: ‘Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer’, Oncology, 2007, 72, (5–6), pp. 397402.
    10. 10)
      • 10. Wu, H., Zhu, S., Mo, Y.-Y.: ‘Suppression of cell growth and invasion by miR-205 in breast cancer’, Cell Res., 2009, 19, (4), p. 439.
    11. 11)
      • 11. Yanaihara, N., Caplen, N., Bowman, E., et al: ‘Unique microRNA molecular profiles in lung cancer diagnosis and prognosis’, Cancer Cell, 2006, 9, (3), pp. 189198.
    12. 12)
      • 12. Li, Y., Qiu, C., Tu, J., et al: ‘HMDD v2.0: a database for experimentally supported human microRNA and disease associations’, Nucleic Acids Res., 2013, 42, (D1), pp. D1070D1074.
    13. 13)
      • 13. Jiang, Q., Wang, Y., Hao, Y., et al: ‘Mir2disease: a manually curated database for microRNA deregulation in human disease’, Nucleic Acids Res., 2008, 37, (Suppl. 1), pp. D98D104.
    14. 14)
      • 14. Kuo, T.-Y., Hsi, E., Yang, I.-P., et al: ‘Computational analysis of mRNA expression profiles identifies microRNA-29a/c as predictor of colorectal cancer early recurrence’, PLoS One, 2012, 7, (2), p. e31587.
    15. 15)
      • 15. Li, X., Wang, Q., Zheng, Y., et al: ‘Prioritizing human cancer microRNAs based on genes’ functional consistency between microRNA and cancer’, Nucleic Acids Res., 2011, 39, (22), pp. e153e153.
    16. 16)
      • 16. Zhang, W., Zang, J., Jing, X., et al: ‘Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer’, J. Translat. Med., 2014, 12, (1), p. 66.
    17. 17)
      • 17. Chen, X., Yan, G.-Y.: ‘Semi-supervised learning for potential human microRNA-disease associations inference’, Sci. Rep., 2014, 4, p. 5501.
    18. 18)
      • 18. Chen, X., Liu, M.-X., Yan, G.-Y.: ‘RWRMDA: predicting novel human microRNA–disease associations’, Mol. Biosyst., 2012, 8, (10), pp. 27922798.
    19. 19)
      • 19. Zhao, X.M., Liu, K.Q., Zhu, G., et al: ‘Identifying cancer-related microRNAs based on gene expression data’, Bioinformatics, 2015, 31, (8), p. 1226.
    20. 20)
      • 20. Li, C., Li, X., Miao, Y., et al: ‘Subpathwayminer: a software package for flexible identification of pathways’, Nucleic Acids Res., 2009, 37, (19), p. e131.
    21. 21)
      • 21. Li, C., Shang, D., Wang, Y., et al: ‘Characterizing the network of drugs and their affected metabolic subpathways’, PLoS One, 2012, 7, (10), p. e47326.
    22. 22)
      • 22. Li, X., Li, C., Shang, D., et al: ‘The implications of relationships between human diseases and metabolic subpathways’, PLoS One, 2011, 6, (6), p. e21131.
    23. 23)
      • 23. Jacob, L., Neuvial, P., Dudoit, S.: ‘More power via graph-structured tests for differential expression of gene networks’, Ann. Appl. Stat., 2012, 6, (2), pp. 561600.
    24. 24)
      • 24. Martini, P., Sales, G., Massa, M.S., et al: ‘Along signal paths: an empirical gene set approach exploiting pathway topology’, Nucleic Acids Res., 2012, 41, (1), pp. e19e19.
    25. 25)
      • 25. Sebastian-Leon, P., Vidal, E., Minguez, P., et al: ‘Understanding disease mechanisms with models of signaling pathway activities’, BMC Syst. Biol., 2014, 8, (1), p. 121.
    26. 26)
      • 26. Li, X., Shen, L., Shang, X., et al: ‘Subpathway analysis based on signaling-pathway impact analysis of signaling pathway’, PLoS One, 2015, 10, (7), p. e0132813.
    27. 27)
      • 27. Edgar, R., Domrachev, M., Lash, A.E.: ‘Gene expression omnibus: NCBI gene expression and hybridization array data repository’, Nucleic Acids Res., 2002, 30, (1), pp. 207210.
    28. 28)
      • 28. Griffiths-Jones, S., Grocock, R.J., Van Dongen, S., et al: ‘miRBase: microRNA sequences, targets and gene nomenclature’, Nucleic Acids Res., 2006, 34, (Suppl. 1), pp. D140D144.
    29. 29)
      • 29. Krek, A., Grün, D., Poy, M.N., et al: ‘Combinatorial microRNA target predictions’, Nat. Genet., 2005, 37, (5), pp. 495500.
    30. 30)
      • 30. John, B., Enright, A.J., Aravin, A., et al: ‘Human microRNA targets’, PLoS Biol., 2004, 2, (11), p. e363.
    31. 31)
      • 31. Maragkakis, M., Alexiou, P., Papadopoulos, G.L., et al: ‘Accurate microRNA target prediction correlates with protein repression levels’, BMC Bioinf., 2009, 10, (1), p. 295.
    32. 32)
      • 32. Lewis, B.P., Burge, C.B., Bartel, D.P.: ‘Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets’, Cell, 2005, 120, (1), pp. 1520.
    33. 33)
      • 33. Sethupathy, P., Corda, B., Hatzigeorgiou, A.G.: ‘Tarbase: a comprehensive database of experimentally supported animal microRNA targets’, RNA, 2006, 12, (2), pp. 192197.
    34. 34)
      • 34. Sales, G., Calura, E., Cavalieri, D., et al: ‘Graphite – a bioconductor package to convert pathway topology to gene network’, BMC Bioinf., 2012, 13, (1), p. 20.
    35. 35)
      • 35. Smyth, G.K.: ‘Linear models and empirical Bayes methods for assessing differential expression in microarray experiments’, Stat. Appl. Genetics Mol. Biol., 2004, 3, (1), pp. 125.
    36. 36)
      • 36. Yu, H., Gao, G., Jiang, L., et al: ‘Decreased expression of miR-218 is associated with poor prognosis in patients with colorectal cancer’, Int. J. Clin. Exp. Pathol., 2013, 6, (12), p. 2904.
    37. 37)
      • 37. Zhang, X., Shi, H., Tang, H., et al: ‘miR-218 inhibits the invasion and migration of colon cancer cells by targeting the PI3K/Akt/mTOR signaling pathway’, Int. J. Mol. Med., 2015, 35, (5), pp. 13011308.
    38. 38)
      • 38. Park, Y.R., Lee, S.T., Kim, S.L., et al: ‘MicroRNA-9 suppresses cell migration and invasion through downregulation of TM4SF1 in colorectal cancer’, Int. J. Oncol., 2016, 48, (5), pp. 21352143.
    39. 39)
      • 39. Zhu, L., Chen, H., Zhou, D., et al: ‘MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility’, Med. Oncol., 2012, 29, (2), pp. 10371043.
    40. 40)
      • 40. Wu, W., He, X., Kong, J., et al: ‘Mir-373 affects human lung cancer cells’ growth and its E-cadherin expression’, Oncol. Res. Featuring Preclin. Clin. Cancer Therapeut., 2012, 20, (4), pp. 163170.
    41. 41)
      • 41. Wang, L.-K., Hsiao, T.-H., Hong, T.-M., et al: ‘MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma’, PLoS One, 2014, 9, (5), p. e96765.
    42. 42)
      • 42. Lan, D., Zhang, X., He, R., et al: ‘MiR-133a is downregulated in non-small cell lung cancer: a study of clinical significance’, European J. Med. Res., 2015, 20, (1), p. 50.
    43. 43)
      • 43. Moriya, Y., Nohata, N., Kinoshita, T., et al: ‘Tumor suppressive microRNA-133a regulates novel molecular networks in lung squamous cell carcinoma’, J. Human Genetics, 2012, 57, (1), p. 38.
    44. 44)
      • 44. Yu, J., Feng, J., Zhi, X., et al: ‘Let-7b inhibits cell proliferation, migration, and invasion through targeting Cthrc1 in gastric cancer’, Tumor Biol., 2015, 36, (5), pp. 32213229.
    45. 45)
      • 45. Han, X., Chen, Y., Yao, N., et al: ‘MicroRNA let-7b suppresses human gastric cancer malignancy by targeting ING1’, Cancer Gene Ther., 2015, 22, (3), p. 122.
    46. 46)
      • 46. Kang, W., Tong, J.H., Lung, R.W., et al: ‘let-7b/g silencing activates AKT signaling to promote gastric carcinogenesis’, J. Translat. Med., 2014, 12, (1), p. 281.
    47. 47)
      • 47. Chu, S.-J., Wang, G., Zhang, P.-F., et al: ‘Retracted article: MicroRNA-203 suppresses gastric cancer growth by targeting PIBF1/Akt signaling’, J. Exp. Clin. Cancer Res., 2016, 35, (1), p. 47.
    48. 48)
      • 48. Zhou, P., Jiang, N., Zhang, G.-X., et al: ‘MiR-203 inhibits tumor invasion and metastasis in gastric cancer by ATM’, Acta Biochim. Biophys. Sin, 2016, 48, (8), pp. 696703.
    49. 49)
      • 49. Zhou, X., Xu, G., Yin, C., et al: ‘Down-regulation of miR-203 induced by Helicobacter pylori infection promotes the proliferation and invasion of gastric cancer by targeting CASK’, OncoTarget, 2014, 5, (22), p. 11631.
    50. 50)
      • 50. Liang, T., Li, L., Cheng, Y., et al: ‘MicroRNA-194 promotes the growth, migration, and invasion of ovarian carcinoma cells by targeting protein tyrosine phosphatase nonreceptor type 12’, OncoTargets Ther., 2016, 9, p. 4307.
    51. 51)
      • 51. Xia, Y., Gao, Y.: ‘MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2’, Biochem. Biophys. Res. Commun., 2014, 447, (3), pp. 446451.
    52. 52)
      • 52. Paudel, D., Zhou, W., Ouyang, Y., et al: ‘MicroRNA-130b functions as a tumor suppressor by regulating RUNX3 in epithelial ovarian cancer’, Gene, 2016, 586, (1), pp. 4855.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2018.5025
Loading

Related content

content/journals/10.1049/iet-syb.2018.5025
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address