Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Biological pest control using a model-based robust feedback

Biological pest control using a model-based robust feedback

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Biological control is the artificial manipulation of natural enemies of a pest for its regulation to densities below a threshold for economic damage. The authors address the biological control of a class of pest population models using a model-based robust feedback approach. The proposed control framework is based on a recursive cascade control scheme exploiting the chained form of pest population models and the use of virtual inputs. The robust feedback is formulated considering the non-linear model uncertainties via a simple and intuitive control design. Numerical results on three pest biological control problems show that the proposed model-based robust feedback can regulate the pest population at the desired reference via the manipulation of a biological control action despite model uncertainties.

References

    1. 1)
      • 36. Murdoch, W.W., Chesson, J., Chesson, P.L.: ‘Biological control in theory and practice’, Am. Nat., 1985, 125, pp. 344366.
    2. 2)
      • 15. Ghosh, S., Bhattacharya, D.K.: ‘Optimization in microbial pest control: an integrated approach’, Appl. Math. Model., 2010, 34, pp. 13821395.
    3. 3)
      • 27. Zhou, K., Doyle, J.C.: ‘Essentials of robust control’ (Prentice-Hall, New Jersey, NJ, USA, 1998).
    4. 4)
      • 29. Kothare, M.V., Balakrishnan, V., Morari, M.: ‘Robust constrained model predictive control using linear matrix inequalities’, Automatica, 1996, 32, pp. 13611379.
    5. 5)
      • 2. Bosch, R.V.D., Messenger, P.S., Gutierrez, A.P.: ‘An introduction to biological control’ (Plenum Press, New York, NY, USA, 1982).
    6. 6)
      • 37. Myers, J.H., Savoie, A., Randen, E.V.: ‘Eradication and pest management’, Annu. Rev. Entomol., 1998, 43, pp. 471491.
    7. 7)
      • 18. Sakthivel, R., Saravanakumar, T., Sathishkumar, M.: ‘Non-fragile reliable control synthesis of the sugarcane borer’, IET Syst. Biol., 2017, 11, (5), pp. 139143.
    8. 8)
      • 12. Wang, S., Huang, Q.: ‘Bifurcation of nontrivial periodic solutions for a Beddington-DeAngelis interference model with impulsive biological control’, Appl. Math. Model., 2015, 39, pp. 14701479.
    9. 9)
      • 14. Apreutesei, N.C.: ‘An optimal control problem for a pest, predator, and plant system’, Nonlinear Anal. Real World Appl., 2010, 13, pp. 13911400.
    10. 10)
      • 17. Zhang, W., Swinton, S.M.: ‘Incorporating natural enemies in an economic threshold for dynamically optimal pest management’, Ecol. Model., 2009, 220, pp. 13151324.
    11. 11)
      • 21. Gotelli, N.J., Colwell, R.K.: ‘Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness’, Ecol. Lett., 2001, 4, pp. 379391.
    12. 12)
      • 26. Molnár, S., López, I., Gámez, M., et al: ‘A two-agent model applied to the biological control of the sugarcane borer (Diatraea saccharalis) by the egg parasitoid Trichogramma galloi and the larvae parasitoid Cotesia flavipes’, Biosyst., 2016, 141, pp. 4554.
    13. 13)
      • 3. Elliott, N. C., Farrell, J. A., Gutierrez, A. P., et al: ‘Integrated pest management’ (Chapman & Hall, London, UK, 1995).
    14. 14)
      • 30. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: ‘Nonlinear and adaptive control design’ (Wiley, New York, NY, USA, 1995).
    15. 15)
      • 31. Yao, J., Deng, W.: ‘Active disturbance rejection adaptive control of uncertain nonlinear systems: theory and application’, Nonlin. Dyn., 2017, 89, pp. 16111624.
    16. 16)
      • 10. Jiao, J.J., Chen, L.S., Cai, S.H.: ‘Impulsive control strategy of a pest management SI model with nonlinear incidence rate’, Appl. Math. Model., 2009, 33, pp. 555563.
    17. 17)
      • 35. Puebla, H., Alvarez-Ramirez, J.: ‘Suppression of stick-slip in oil drillstrings: a control approach based on modeling error compensation’, J. Sound Vib., 2008, 310, pp. 881901.
    18. 18)
      • 42. Hangos, K.M., Bokor, J., Szederkényi, G.: ‘Analysis and control of nonlinear process systems’ (Springer-Verlag, London, UK, 2004).
    19. 19)
      • 16. Rafikov, M., Balthazar, J.M., von Bremen, H.F.: ‘Mathematical modeling and control of population systems: applications in biological pest control’, Appl. Math. Comput., 2008, 200, pp. 557573.
    20. 20)
      • 4. Beddington, J.R., Free, C.A., Lawton, J.H.: ‘Concepts of stability and resilience in predator-prey models’, J. Animal Ecol., 1976, 45, pp. 791816.
    21. 21)
      • 39. Simberloff, D., Stiling, P.: ‘How risky is biological control?’, Ecology, 1996, 77, pp. 19651974.
    22. 22)
      • 1. Goh, B.S.: ‘Management and analysis of biological populations’ (Elsevier Scientific Publishing Company, Amsterdam, The Netherlands, 1980).
    23. 23)
      • 8. Georgescu, P., Moroşanu, G.: ‘Pest regulation by means of impulsive controls’, Appl. Math. Comput., 2007, 190, pp. 790803.
    24. 24)
      • 9. Tan, Y., Chen, L.: ‘Modelling approach for biological control of insect pest by releasing infected pest’, Chaos Solitons Fract., 2009, 39, pp. 304315.
    25. 25)
      • 7. Tang, S., Cheke, R.A.: ‘Models for integrated pest control and their biological implications’, Math. Biosci., 2008, 215, pp. 115125.
    26. 26)
      • 40. Louda, S.M., Kendall, D., Connor, J., et al: ‘Ecological effects of an insect introduced for the biological control of weeds’, Science, 1997, 277, pp. 10881090.
    27. 27)
      • 23. Mills, N.J., Getz, W.M.: ‘Modelling the biological control of insect pests: a review of host-parasitoid models’, Ecol. Model., 1996, 92, pp. 121143.
    28. 28)
      • 22. Guzmán, C., Aguilar-Fenollosa, E., Sahún, R.M., et al: ‘Temperature-specific competition in predatory mites: implications for biological pest control in a changing climate’, Agric. Ecosyst. Environ., 2016, 216, pp. 8997.
    29. 29)
      • 19. Holling, C.S.: ‘Resilience and stability of ecological systems’, Annu. Rev. Ecol. Syst., 1973, 4, pp. 123.
    30. 30)
      • 25. Rafikov, M., Silveira, J.C.: ‘On dynamical behavior of the sugarcane borer--parasitoid agroecosystem’, Ecol. Complexity, 2014, 18, pp. 6773.
    31. 31)
      • 24. Rai, V., Anand, M., Upadhyay, R.K.: ‘Trophic structure and dynamical complexity in simple ecological models’, Ecol. Complexity, 2007, 4, pp. 212222.
    32. 32)
      • 33. Shtessel, Y., Edwards, C., Fridman, L., et al: ‘Sliding mode control and observation’ (Birkhäuser, New York, NY, USA, 2014).
    33. 33)
      • 34. Alvarez-Ramirez, J.: ‘Adaptive control of feedback linearizable systems: a modelling error compensation approach’, Int. J. Robust Nonlin. Control, 1999, 9, pp. 361377.
    34. 34)
      • 41. Begon, M., Harper, J.L., Townsend, C.R.: ‘Ecology: individuals, populations and communities’ (Blackwell Scientific Publication, Oxford, UK, 1996, 3rd edn.).
    35. 35)
      • 6. Tang, S., Cheke, R.A.: ‘State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences’, J. Math. Biol., 2005, 50, pp. 257292.
    36. 36)
      • 11. Rafikov, M., Lordelo, A.D.S., Rafikova, E.: ‘Impulsive biological pest control strategies of the sugarcane borer’, Math. Problems Eng., 2012, 2012, Article id, 726783, p. 14.
    37. 37)
      • 32. Mhaskar, P., El-Farra, N.H., Christofides, P.D.: ‘Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control’, Syst. Control Lett., 2006, 55, pp. 650659.
    38. 38)
      • 13. Xue, Y., Tang, S., Liang, J.: ‘Optimal timing of interventions in fishery resource and pest management’, Nonliner Anal. Real World Appl., 2012, 13, pp. 16301646.
    39. 39)
      • 38. Howarth, F.G.: ‘Environmental impacts of classical biological control’, Annu. Rev. Entomol., 1991, 36, pp. 485509.
    40. 40)
      • 20. Embleton, N.L., Petrovskaya, N.B.: ‘On numerical uncertainty in evaluation of pest population size’, Ecol. Complexity, 2013, 14, pp. 117131.
    41. 41)
      • 5. Lu, Z., Chi, X., Chen, L.: ‘Impulsive control strategies in biological control of pesticide’, Theor. Popul. Biol., 2003, 64, pp. 3947.
    42. 42)
      • 28. Garcia, C.E., Morari, M.: ‘Internal model control. A unifying review and some new results’, Ind. Eng. Chem. Process Design Dev., 1982, 21, pp. 308323.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2018.5010
Loading

Related content

content/journals/10.1049/iet-syb.2018.5010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address