http://iet.metastore.ingenta.com
1887

Time-invariant biological networks with feedback loops: structural equation models and structural identifiability

Time-invariant biological networks with feedback loops: structural equation models and structural identifiability

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Quantitative analyses of biological networks such as key biological parameter estimation necessarily call for the use of graphical models. While biological networks with feedback loops are common in reality, the development of graphical model methods and tools that are capable of dealing with feedback loops is still in its infancy. Particularly, inadequate attention has been paid to the parameter identifiability problem for biological networks with feedback loops such that unreliable or even misleading parameter estimates may be obtained. In this study, the structural identifiability analysis problem of time-invariant linear structural equation models (SEMs) with feedback loops is addressed, resulting in a general and efficient solution. The key idea is to combine Mason's gain with Wright's path coefficient method to generate identifiability equations, from which identifiability matrices are then derived to examine the structural identifiability of every single unknown parameter. The proposed method does not involve symbolic or expensive numerical computations, and is applicable to a broad range of time-invariant linear SEMs with or without explicit latent variables, presenting a remarkable breakthrough in terms of generality. Finally, a subnetwork structure of the C. elegans neural network is used to illustrate the application of the authors’ method in practice.

References

    1. 1)
      • 1. Stelzl, U., Worm, U., Lalowski, M., et al: ‘A human protein–protein interaction network: a resource for annotating the proteome’, Cell, 2005, 122, (6), pp. 957968.
    2. 2)
      • 2. Rual, J.F., Venkatesan, K., Hao, T., et al: ‘Towards a proteome-scale map of the human protein-protein interaction network’, Nature, 2005, 437, pp. 11731178.
    3. 3)
      • 3. Minguez, P., Parca, L., Diella, F., et al: ‘Deciphering a global network of functionally associated post-translational modifications’, Mol. Syst. Biol., 2012, 8, (1), pp. 599599.
    4. 4)
      • 4. Minguez, P., Letunic, I., Parca, L., et al: ‘Ptmcode: a database of known and predicted functional associations between post-translational modifications in proteins’, Nucleic Acids Res., 2013, 41, pp. 306311.
    5. 5)
      • 5. Liu, Z., Wu, H., Zhu, J., et al: ‘Systematic identification of transcriptional and post-transcriptional regulations in human respiratory epithelial cells during influenza a virus infection’, BMC Bioinf., 2014, 15, (1), pp. 336336.
    6. 6)
      • 6. Carninci, P., Kasukawa, T., Katayama, S., et al: ‘The transcriptional landscape of the mammalian genome’, Science, 2005, 309, pp. 15591563.
    7. 7)
      • 7. Jeong, H., Tombor, B., Albert, R., et al: ‘The large-scale organization of metabolic networks’, Nature, 2000, 407, pp. 651654.
    8. 8)
      • 8. Duarte, N.C., Becker, S.A., Jamshidi, N., et al: ‘Global reconstruction of the human metabolic network based on genomic and bibliomic data’, Proc. Natl. Acad. Sci. USA, 2007, 104, (6), pp. 17771782.
    9. 9)
      • 9. Miao, H., Xia, X., Perelson, A.S., et al: ‘On identifiability of nonlinear ODE models and applications in viral dynamics’, SIAM Rev., 2011, 53, (1), pp. 339.
    10. 10)
      • 10. Giraud, C., Tsybakov, A.: ‘Discussion: latent variable graphical model selection via convex optimization’, Ann. Stat., 2012, 40, (4), pp. 19841988.
    11. 11)
      • 11. Domke, J.: ‘Learning graphical model parameters with approximate marginal inference’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (10), pp. 24542467.
    12. 12)
      • 12. Walsh, M.M., Anderson, J.R.: ‘Learning from delayed feedback: neural responses in temporal credit assignment’, Cogn., Affective, Behav. Neurosci., 2011, 11, (2), pp. 131143.
    13. 13)
      • 13. Folmer, E., Der Geest, M.V., Jansen, E., et al: ‘Seagrass–sediment feedback: an exploration using a non-recursive structural equation model’, Ecosystems, 2012, 15, (8), pp. 13801393.
    14. 14)
      • 14. Hori, Y., Takada, M., Hara, S.: ‘Biochemical oscillations in delayed negative cyclic feedback: existence and profiles’, Automatica, 2013, 49, (9), pp. 25812590.
    15. 15)
      • 15. Spirtes, P.: ‘Directed cyclic graphical representations of feedback models’. Uncertainty in Artificial Intelligence, Montreal, Canada, 2013.
    16. 16)
      • 16. Shamaiah, M., Lee, S.H., Vikalo, H.: ‘Graphical models and inference on graphs in genomics: challenges of high-throughput data analysis’, IEEE Signal Process. Mag., 2012, 29, (1), pp. 5165.
    17. 17)
      • 17. Mohan, K., Pearl, J.: ‘Graphical models for recovering probabilistic and causal queries from missing data’. Neural Information Processing Systems, Montreal, Canada, 2014.
    18. 18)
      • 18. Leung, D., Drton, M., Hara, H.: ‘Identifiability of directed Gaussian graphical models with one latent source’, Electron. J. Stat., 2015, 10, (1), pp. 394422.
    19. 19)
      • 19. Leung, R.H., Stroman, P.W.: ‘Functional magnetic resonance imaging of the human brainstem and cervical spinal cord during cognitive modulation of pain’, Crit. Rev. Biomed. Eng., 2016, 44, pp. 4771.
    20. 20)
      • 20. Gates, K.M., Molenaar, P.C.M., Hillary, F.G., et al: ‘Extended unified SEM approach for modeling event-related FMRI data’, NeuroImage, 2011, 54, (2), pp. 11511158.
    21. 21)
      • 21. Fernandezmuniz, B., Montespeon, J.M., Vazquezordas, C.J.: ‘Relation between occupational safety management and firm performance’, Saf. Sci., 2009, 47, (7), pp. 980991.
    22. 22)
      • 22. Pearl, J.: ‘Causality: models, reasoning, and inference’ (Cambridge University Press, New York, NY, USA, 2009, 2nd edn.).
    23. 23)
      • 23. Rao, P., Holt, D.: ‘Do green supply chains lead to competitiveness and economic performance’, Int. J. Oper. Prod. Manage., 2013, 25, (9), pp. 898916.
    24. 24)
      • 24. Pike, G.R., Kuh, G.D.: ‘First- and second-generation college students: a comparison of their engagement and intellectual development’, J. High. Educ., 2005, 76, (3), pp. 276300.
    25. 25)
      • 25. Kline, R.B.: ‘Principles and practice of structural equation modeling’ (Guilford Press, New York, NY, USA, 2005, 2nd edn.).
    26. 26)
      • 26. Mazman, S.G., Usluel, Y.K.: ‘Modeling educational usage of facebook’, Comput. Educ., 2010, 55, (2), pp. 444453.
    27. 27)
      • 27. Wang, Y., Miao, H.: ‘Parameter identifiability-based optimal observation remedy for biological networks’, BMC Syst. Biol., 2017, 11, (1), p. 53.
    28. 28)
      • 28. Cai, X.B.J., Giannakis, G.B.: ‘Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations’, PLoS Comput Biol., 2013, 9, pp. 113.
    29. 29)
      • 29. Dong, Z, Song, T., Yuan, C: ‘Inference of gene regulatory networks from genetic perturbations with linear regression model’, PLoS ONE, 2013, 8, (12), pp. 19.
    30. 30)
      • 30. Gui, S., Chen, R., Wu, L., et al: ‘A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data’, BMC Bioinf., 2017, 18, (1), p. 74.
    31. 31)
      • 31. Richardson, T.S.: ‘A discovery algorithm for directed cyclic graphs’. Uncertainty in Artificial Intelligence, Portland, OR, USA, 2013.
    32. 32)
      • 32. Poole, D., Crowley, M.: ‘Cyclic causal models with discrete variables: markov chain equilibrium semantics and sample ordering’. Int. Joint Conf. on Artificial Intelligence, Beijing, China, 2013.
    33. 33)
      • 33. Tian, J.: ‘A criterion for parameter identification in structural equation models’, arXiv preprint arXiv:1206.5289, 2012.
    34. 34)
      • 34. Peters, J., Bühlmann, P.: ‘Identifiability of Gaussian structural equation models with equal error variances’, Biometrika, 2013, p. ast043.
    35. 35)
      • 35. Pearl, J.: ‘Linear models: a useful ‘microscope’ for causal analysis’, J. Causal Inference, 2013, 1, (1), pp. 155170.
    36. 36)
      • 36. Hyttinen, A., Eberhardt, F., Hoyer, P.O.: ‘Learning linear cyclic causal models with latent variables’, J. Mach. Learn. Res., 2012, 13, (1), pp. 33873439.
    37. 37)
      • 37. Brito, C., Pearl, J.: ‘A new identification condition for recursive models with correlated errors’, Struct. Equ. Modeling, 2002, 9, (4), pp. 459474.
    38. 38)
      • 38. Brito, C., Pearl, J.: ‘Graphical condition for identification in recursive SEM’, arXiv preprint arXiv:1206.6821, 2012.
    39. 39)
      • 39. Tian, J.: ‘Parameter identification in a class of linear structural equation models’. Int. Joint Conf. on Artificial Intelligence, Pasadena, CA, USA, 2009.
    40. 40)
      • 40. Drton, M., Foygel, R., Sullivant, S.: ‘Global identifiability of linear structural equation models’, Ann. Stat., 2011, 39, pp. 865886.
    41. 41)
      • 41. Foygel, R., Draisma, J., Drton, M.: ‘Half-trek criterion for generic identifiability of linear structural equation models’, Ann. Stat., 2012, 40, (3), pp. 16821713.
    42. 42)
      • 42. Sullivant, S., Garcia-Puente, L.D., Spielvogel, S.: ‘Identifying causal effects with computer algebra’. Proc. of the Twenty-Sixth Conf. on Uncertainty in Artificial Intelligence (UAI), Catalina Island, CA, USA, 2010.
    43. 43)
      • 43. Wang, Y., Lu, N., Miao, H.: ‘Structural identifiability of cyclic graphical models of biological networks with latent variables’, BMC Syst. Biol., 2016, 10, (1), pp. 115.
    44. 44)
      • 44. Wright, S.: ‘Path coefficients and path regressions: alternative or complementary concepts?’, Biometrics, 1960, 16, (2), pp. 189202.
    45. 45)
      • 45. Mason, S.J.: ‘Feedback theory-further properties of signal flow graphs’, Proc. Inst. Radio Eng., 1956, 44, (7), pp. 920926.
    46. 46)
      • 46. Shimizu, S., Hoyer, P.O., Hyvärinen, A., et al: ‘A linear non-Gaussian acyclic model for causal discovery’, J. Mach. Learn. Res., 2006, 7, pp. 20032030.
    47. 47)
      • 47. Hoyer, P.O., Hyvarinen, A., Scheines, R., et al: ‘Causal discovery of linear acyclic models with arbitrary distributions’, arXiv preprint arXiv:1206.3260, 2012.
    48. 48)
      • 48. Hayduk, L.A.: ‘Finite feedback cycling in structural equation models’, Struct. Equ. Modeling, 2009, 16, (4), pp. 658675.
    49. 49)
      • 49. Kahn, A.B.: ‘Topological sorting of large networks’, Commun. ACM, 1962, 5, (11), pp. 558562.
    50. 50)
      • 50. Charbit, P., Thomasse, S., Yeo, A.: ‘The minimum feedback arc set problem is Np-hard for tournaments’, Comb., Probab. Comput., 2007, 16, (01), pp. 14.
    51. 51)
      • 51. Ljung, L.: ‘Convergence analysis of parametric identification methods’, IEEE Trans. Autom. Control, 1978, 23, (5), pp. 770783.
    52. 52)
      • 52. Ljung, L., Glad, T.: ‘On global identifiability for arbitrary model parametrizations’, Automatica, 1994, 30, (2), pp. 265276.
    53. 53)
      • 53. Ljung, L.: ‘System identification: theory for the user’ (Prentice Hall, Englewood Cliffs, NJ, USA, 1987).
    54. 54)
      • 54. Liu, Y., Slotine, J.E., Barabasi, A.: ‘Observability of complex systems’, Proc. Natl. Acad. Sci. USA, 2013, 110, (7), pp. 24602465.
    55. 55)
      • 55. Watts, D.J., Strogatz, S.H.: ‘Collective dynamics of ‘small-world’ networks’, Nature, 1998, 393, (6684), pp. 440442.
    56. 56)
      • 56. Valentini, P., Ippoliti, L., Fontanella, L.: ‘Modeling us housing prices by spatial dynamic structural equation models’, Ann. Appl. Stat., 2013, 7, (2), pp. 763798.
    57. 57)
      • 57. Prindle, J.J., Mcardle, J.J.: ‘An examination of statistical power in multigroup dynamic structural equation models’, Struct. Equ. Model., 2012, 19, (3), pp. 351371.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2018.5004
Loading

Related content

content/journals/10.1049/iet-syb.2018.5004
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address