http://iet.metastore.ingenta.com
1887

Identification of self-regulatory network motifs in reverse engineering gene regulatory networks using microarray gene expression data

Identification of self-regulatory network motifs in reverse engineering gene regulatory networks using microarray gene expression data

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Gene Regulatory Networks (GRNs) are reconstructed from the microarray gene expression data through diversified computational approaches. This process ensues in symmetric and diagonal interaction of gene pairs that cannot be modelled as direct activation, inhibition, and self-regulatory interactions. The values of gene co-expressions could help in identifying co-regulations among them. The proposed approach aims at computing the differences in variances of co-expressed genes rather than computing differences in values of mean expressions across experimental conditions. It adopts multivariate co-variances using principal component analysis (PCA) to predict an asymmetric and non-diagonal gene interaction matrix, to select only those gene pair interactions that exhibit the maximum variances in gene regulatory expressions. The asymmetric gene regulatory interactions help in identifying the controlling regulatory agents, thus lowering the false positive rate by minimizing the connections between previously unlinked network components. The experimental results on real as well as in silico datasets including time-series RTX therapy, Arabidopsis thaliana, DREAM-3, and DREAM-8 datasets, in comparison with existing state-of-the-art approaches demonstrated the enhanced performance of the proposed approach for predicting positive and negative feedback loops and self-regulatory interactions. The generated GRNs hold the potential in determining the real nature of gene pair regulatory interactions.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2018.5001
Loading

Related content

content/journals/10.1049/iet-syb.2018.5001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address