http://iet.metastore.ingenta.com
1887

access icon openaccess Overlapping functional modules detection in PPI network with pair-wise constrained non-negative matrix tri-factorisation

Loading full text...

Full text loading...

/deliver/fulltext/iet-syb/12/2/IET-SYB.2017.0084.html;jsessionid=xgunyoy6jm3w.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-syb.2017.0084&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Davis, D., Yaveroğlu, Ö.N., Malod-Dognin, N., et al: ‘Topology-function conservation in protein–protein interaction networks’, Bioinformatics, 2015, 31, (10), pp. 16321639.
    2. 2)
      • 2. Aebersold, R., Mann, M.: ‘Mass spectrometry-based proteomics’, Nature, 2003, 422, (6928), pp. 198207.
    3. 3)
      • 3. Ho, Y., Gruhler, A., Heilbut, A., et al: ‘Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry’, Nature, 2002, 415, (6868), pp. 180183.
    4. 4)
      • 4. Ito, T., Chiba, T., Ozawa, R., et al: ‘A comprehensive two-hybrid analysis to explore the yeast protein interactome’, Proc. Natl. Acad. Sci., 2001, 98, (8), pp. 45694574.
    5. 5)
      • 5. Uetz, P., Giot, L., Cagney, G., et al: ‘A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae’, Nature, 2000, 403, (6770), pp. 623627.
    6. 6)
      • 6. Wu, H., Gao, L., Dong, J., et al: ‘Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks’, PLoS ONE, 2014, 9, (3), p. e91856.
    7. 7)
      • 7. Pereira-Leal, J.B., Levy, E.D., Teichmann, S.A.: ‘The origins and evolution of functional modules: lessons from protein complexes’, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2006, 361, (1467), pp. 507517.
    8. 8)
      • 8. Albert, R., Jeong, H., Barabási, A.L.: ‘Error and attack tolerance of complex networks’, Nature, 2000, 406, (6794), pp. 378382.
    9. 9)
      • 9. Wagner, G.P., Pavlicev, M., Cheverud, J.M.: ‘The road to modularity’, Nat. Rev. Genetics, 2007, 8, (12), pp. 921931.
    10. 10)
      • 10. Shih, Y.K., Parthasarathy, S.: ‘Identifying functional modules in interaction networks through overlapping Markov clustering’, Bioinformatics, 2012, 28, (18), pp. i473i479.
    11. 11)
      • 11. Lei, X., Wu, S., Ge, L., et al: ‘Clustering and overlapping modules detection in PPI network based on IBFO’, Proteomics, 2013, 13, (2), pp. 278290.
    12. 12)
      • 12. Nepusz, T., Yu, H., Paccanaro, A.: ‘Detecting overlapping protein complexes in protein-protein interaction networks’, Nat. Meth., 2012, 9, (5), pp. 471472.
    13. 13)
      • 13. Kenley, E.C., Cho, Y.R.: ‘Detecting protein complexes and functional modules from protein interaction networks: a graph entropy approach’, Proteomics, 2011, 11, (19), pp. 38353844.
    14. 14)
      • 14. Arnau, V., Mars, S., Marín, I.: ‘Iterative cluster analysis of protein interaction data’, Bioinformatics, 2004, 21, (3), pp. 364378.
    15. 15)
      • 15. Adamcsek, B., Palla, G., Farkas, I.J., et al: ‘CFinder: locating cliques and overlapping modules in biological networks’, Bioinformatics, 2006, 22, (8), pp. 10211023.
    16. 16)
      • 16. Palla, G., Derényi, I., Farkas, I., et al: ‘Uncovering the overlapping community structure of complex networks in nature and society’, Nature, 2005, 435, (7043), pp. 814818.
    17. 17)
      • 17. Xiang, Y., Zhang, C.Q., Huang, K.: ‘Predicting glioblastoma prognosis networks using weighted gene co-expression network analysis on TCGA data’, BMC Bioinform.. BioMed Central, 2012, 13, (S2), p. S12.
    18. 18)
      • 18. Bader, G.D., Hogue, C.W.V.: ‘An automated method for finding molecular complexes in large protein interaction networks’, BMC Bioinform., 2003, 4, (1), p. 2.
    19. 19)
      • 19. Li, T., Zhang, Y., Sindhwani, V.: ‘A non-negative matrix tri-factorization approach to sentiment classification with lexical prior knowledge’. Proc. Joint Conf. 47th Annual Meeting of the ACL and the 4th Int. Joint Conf. Natural Language Processing of the AFNLP, 2009, vol. 1, pp. 244252.
    20. 20)
      • 20. Devarajan, K.: ‘Nonnegative matrix factorization: an analytical and interpretive tool in computational biology’, PLoS Comput. Biol., 2008, 4, (7), p. e1000029.
    21. 21)
      • 21. Wang, H., Nie, F., Huang, H., et al: ‘Nonnegative matrix tri-factorization based high-order co-clustering and its fast implementation’. 2011 IEEE 11th Int. Conf. Data Mining (ICDM), 2011, pp. 774783.
    22. 22)
      • 22. Zhu, L., Galstyan, A., Cheng, J., et al: ‘Tripartite graph clustering for dynamic sentiment analysis on social media’. Proc. 2014 ACM SIGMOD international Conf. Management of data, 2014, pp. 15311542.
    23. 23)
      • 23. Pei, Y., Chakraborty, N., Sycara, K.: ‘Nonnegative matrix tri-factorization with graph regularization for community detection in social networks’. Twenty-Fourth Int. Joint Conf. Artificial Intelligence.2015.
    24. 24)
      • 24. Menche, J., Sharma, A., Kitsak, M., et al: ‘Uncovering disease-disease relationships through the incomplete interactome’, Science, 2015, 347, (6224), p. 1257601.
    25. 25)
      • 25. Von Mering, C., Krause, R., Snel, B., et al: ‘Comparative assessment of large-scale data sets of protein–protein interactions’, Nature, 2002, 417, (6887), pp. 399403.
    26. 26)
      • 26. Ruepp, A., Brauner, B., Dunger-Kaltenbach, I., et al: ‘CORUM: the comprehensive resource of mammalian protein complexes’, Nucleic Acids Res., 2007, 36, (Suppl. 1), pp. D646D650.
    27. 27)
      • 27. Psorakis, I., Roberts, S., Ebden, M., et al: ‘Overlapping community detection using Bayesian non-negative matrix factorization’, Phys. Rev. E, 2011, 83, (6), p. 066114.
    28. 28)
      • 28. Wang, F., Li, T., Wang, X., et al: ‘Community discovery using nonnegative matrix factorization’, Data Min. Knowl. Discov., 2011, 22, (3), pp. 493521.
    29. 29)
      • 29. Lu, H., Zhu, X., Liu, H., et al: ‘The interactome as a tree—an attempt to visualize the protein–protein interaction network in yeast’, Nucleic Acids Res., 2004, 32, (16), pp. 48044811.
    30. 30)
      • 30. Wang, R.S., Zhang, S., Wang, Y., et al: ‘Clustering complex networks and biological networks by nonnegative matrix factorization with various similarity measures’, Neurocomputing, 2008, 72, (1), pp. 134141.
    31. 31)
      • 31. Kondor, R.I., Lafferty, J.: ‘Diffusion kernels on graphs and other discrete input spaces’, ICML, 2002, 2, pp. 315322.
    32. 32)
      • 32. Zhang, Z.-Y., Sun, K.-D., Wang, S.-Q.: ‘Enhanced community structure detection in complex networks with partial background information’, Sci. Rep., 2013, 3, pp. 3241.
    33. 33)
      • 33. Yang, L., Cao, X., Jin, D., et al: ‘A unified semi-supervised community detection framework using latent space graph regularization’, IEEE Trans. Cybern., 2015, 45, (11), pp. 25852598.
    34. 34)
      • 34. Wass, M.N., David, A., Sternberg, M.J.E.: ‘Challenges for the prediction of macromolecular interactions’, Curr. Opin. Struct. Biol., 2011, 21, (3), pp. 382390.
    35. 35)
      • 35. Zhu, S., Yu, K., Chi, Y., et al: ‘Combining content and link for classification using matrix factorization’. Proc. 30th annual Int. ACM SIGIR conf. Research and development in Information Retrieval, 2007, pp. 487494.
    36. 36)
      • 36. Wu, Q., Wang, Z., Li, C., et al: ‘Protein functional properties prediction in sparsely-label PPI networks through regularized non-negative matrix factorization’, BMC Syst. Biol., BioMed Central Ltd, 2015, 9, (Suppl. 1), p. S9.
    37. 37)
      • 37. Zhang, Y., Du, N., Ge, L., et al: ‘A collective NMF method for detecting protein functional module from multiple data sources’. Proc. ACM Conf. Bioinformatics, Computational Biology and Biomedicine, 2012, pp. 655660.
    38. 38)
      • 38. Brunet, J.P., Tamayo, P., Golub, T.R., et al: ‘Metagenes and molecular pattern discovery using matrix factorization’, Proc. Natl. Acad. Sci., 2004, 101, (12), pp. 41644169.
    39. 39)
      • 39. Hartwell, L.H., Hopfield, J.J., Leibler, S., et al: ‘From molecular to modular cell biology’, Nature, 1999, 402, pp. C47C52.
    40. 40)
      • 40. Zhang, X.F., Dai, D.Q., Le, O.-Y., et al: ‘Detecting overlapping protein complexes based on a generative model with functional and topological properties’, BMC Bioinform., 2014, 15, (1), p. 186.
    41. 41)
      • 41. Girvan, M., Newman, M.E.J.: ‘Community structure in social and biological networks’, Proc. Natl. Acad. Sci., 2002, 99, (12), pp. 78217826.
    42. 42)
      • 42. Lancichinetti, A., Fortunato, S., Radicchi, F.: ‘Benchmark graphs for testing community detection algorithms’, Phys. Rev. E, 2008, 78, (4), p. 046110.
    43. 43)
      • 43. Xenarios, I., Salwinski, L., Duan, X.J., et al: ‘DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions’, Nucleic Acids Res., 2002, 30, (1), pp. 303305.
    44. 44)
      • 44. Peri, S., Navarro, J.D., Kristiansen, T.Z., et al: ‘Human protein reference database as a discovery resource for proteomics’, Nucleic Acids Res., 2004, 32, (Suppl. 1), pp. D497D501.
    45. 45)
      • 45. Kikugawa, S., Nishikata, K., Murakami, K., et al: ‘PCDq: human protein complex database with quality index which summarizes different levels of evidences of protein complexes predicted from h-invitational protein-protein interactions integrative dataset’, BMC Syst. Biol., 2012, 6, (Suppl. 2), p. S7.
    46. 46)
      • 46. Radicchi, F., Castellano, C., Cecconi, F., et al: ‘Defining and identifying communities in networks’, Proc. Natl. Acad. Sci. USA, 2004, 101, (9), pp. 26582663.
    47. 47)
      • 47. Lovász, L., Plummer, M.D.: ‘Matching theory’ (American Mathematical Society, Providence, 2009).
    48. 48)
      • 48. Ou-Yang, L., Dai, D.Q., Zhang, X.F.: ‘Protein complex detection via weighted ensemble clustering based on Bayesian nonnegative matrix factorization’, PLoS ONE, 2013, 8, (5), p. e62158.
    49. 49)
      • 49. Zhang, Y., Yeung, D.Y.: ‘Overlapping community detection via bounded nonnegative matrix tri-factorization’. Proc. 18th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2012, pp. 606614.
    50. 50)
      • 50. Li, Y., Jia, C., Yu, J.: ‘A parameter-free community detection method based on centrality and dispersion of nodes in complex networks’, Phys. A Stat. Mech. Appl., 2015, 438, pp. 321334.
    51. 51)
      • 51. Shi, X., Lu, H., He, Y., et al: ‘Community detection in social network with pairwisely constrained symmetric non-negative matrix factorization’. Proc. 2015 IEEE/ACM Int. Conf. Advances in Social Networks Analysis and Mining 2015, 2015, pp. 541546.
    52. 52)
      • 52. Wang, D., Gao, X., Wang, X.: ‘Semi-supervised nonnegative matrix factorization via constraint propagation’, IEEE Trans. Cybern., 2016, 46, (1), pp. 233244.
    53. 53)
      • 53. Bu, D., Zhao, Y., Cai, L., et al: ‘‘Topological structure analysis of the protein–protein interaction network in budding yeast’, Nucleic Acids Res., 2003, 31, (9), pp. 24432450.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0084
Loading

Related content

content/journals/10.1049/iet-syb.2017.0084
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address