Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Two-dimensional polynomial type canonical relaxation oscillator model for p53 dynamics

p53 network, which is responsible for DNA damage response of cells, exhibits three distinct qualitative behaviours; low state, oscillation and high state, which are associated with normal cell cycle progression, cell cycle arrest and apoptosis, respectively. The experimental studies demonstrate that these dynamics of p53 are due to the ATM and Wip1 interaction. This paper proposes a simple two-dimensional canonical relaxation oscillator model based on the identified topological structure of ATM and Wip1 interaction underlying these qualitative behaviours of p53 network. The model includes only polynomial terms that have the interpretability of known ATM and Wip1 interaction. The introduced model is useful for understanding relaxation oscillations in gene regulatory networks. Through mathematical analysis, we investigate the roles of ATM and Wip1 in forming of these three essential behaviours, and show that ATM and Wip1 constitute the core mechanism of p53 dynamics. In agreement with biological findings, we show that Wip1 degradation term is a highly sensitive parameter, possibly related to mutations. By perturbing the corresponding parameters, our model characterizes some mutations such as ATM deficiency and Wip1 overexpression. Finally, we provide intervention strategies considering our observation that Wip1 seems to be an important target to conduct therapies for these mutations.

References

    1. 1)
      • 22. Bakkenist, C., Kastan, M.: ‘DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation’, Nature, 2003, 421, (6922), p. 499.
    2. 2)
      • 7. Purvis, J., Lahav, G.: ‘Encoding and decoding cellular information through signaling dynamics’, Cell, 2013, 152, (5), pp. 945956.
    3. 3)
      • 19. Pandita, T., Lieberman, H., Lim, D., et al: ‘Ionizing radiation activates the ATM kinase throughout the cell cycle’, Oncogene, 2000, 19, (11), p. 1386.
    4. 4)
      • 5. Vousden, K., Lane, D.: ‘P53 in health and disease’, Mol. Cell Biol., 2007, 8, (4), p. 275.
    5. 5)
      • 23. Mouri, K., Nacher, J.C., Akutsu, T.: ‘A mathematical model for the detection mechanism of DNA double-strand breaks depending on autophosphorylation of ATM’, PLoS One, 2009, 4, (4), p. e5131.
    6. 6)
      • 4. Toettcher, J., Loewer, A., Ostheimer, G., et al: ‘Distinct mechanisms act in concert to mediate cell cycle arrest’, Proc. Natl Acad. Sci. USA, 2009, 106, (3), pp. 785790.
    7. 7)
      • 3. Lahav, G., Rosenfeld, N., Sigal, A., et al: ‘Dynamics of the p53-Mdm2 feedback loop in individual cells’, Nat. Genet., 2004, 36, (2), pp. 147150.
    8. 8)
      • 13. Voit, E., Chou, I.-C.: ‘Parameter estimation in canonical biological systems models’, Int. J. Syst. Synth. Biol., 2010, 1, (1), pp. 119.
    9. 9)
      • 32. Teschl, G.: ‘Ordinary differential equations and dynamical systems’ (American Mathematical Society, Providence, 2012).
    10. 10)
      • 2. Michael, D., Oren, M.: ‘The p53–Mdm2 module and the ubiquitin system’, Semin. Cancer Biol., 2003, 13, pp. 4958.
    11. 11)
      • 9. Batchelor, E., Mock, C.S., Bhan, I., et al: ‘Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage’, Mol. Cell, 2008, 30, (3), pp. 277289.
    12. 12)
      • 16. Goodwin, B.: ‘Oscillatory behavior in enzymatic control processes’, Adv. Enzyme Regul., 1965, 3, (1), pp. 425437.
    13. 13)
      • 33. Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., et al: ‘Oscillations and variability in the p53 system’, Mol. Syst. Biol., 2006, 2, (1), p. 1.
    14. 14)
      • 40. Delia, D., Fontanella, E., Ferrario, C., et al: ‘DNA damage-induced cell-cycle phase regulation of p53 and p21waf1 in normal and ATM-defective cells’, Oncogene, 2003, 22, (49), pp. 78667869.
    15. 15)
      • 28. Xia, Y., Ongusaha, P., Lee, S., et al: ‘Loss of Wip1 sensitizes cells to stress-and DNA damage-induced apoptosis’, J. Biol. Chem., 2009, 284, (26), pp. 1742817437.
    16. 16)
      • 20. Ma, L., Wagner, J., Rice, J.J., et al: ‘A plausible model for the digital response of p53 to DNA damage’, Proc. Natl Acad. Sci. USA, 2005, 102, (40), pp. 1426614271.
    17. 17)
      • 31. Avcu, N., Demir, G., Pekergin, F., et al: ‘Discriminant-based bistability analysis of a TMG-induced lac operon model supported with boundedness and local stability results’, Turk. J. Electr. Eng. Comput. Sci., 2016, 24, (3), pp. 719732.
    18. 18)
      • 27. Darlington, Y., Nguyen, T., Moon, S., et al: ‘Absence of Wip1 partially rescues ATM deficiency phenotypes in mice’, Oncogene, 2012, 31, (9), pp. 11551165.
    19. 19)
      • 38. Rayter, S., Elliott, R., Travers, J., et al: ‘A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D’, Oncogene, 2008, 27, (8), pp. 10361044.
    20. 20)
      • 17. FitzHugh, R.: ‘Impulses and physiological states in theoretical models of nerve membrane’, Biophys. J., 1961, 1, (6), p. 445.
    21. 21)
      • 1. Murray-Zmijewski, F., Slee, E.A., Lu, X.: ‘A complex barcode underlies the heterogeneous response of p53 to stress’, Nat. Rev. Mol. Cell Biol., 2008, 9, (9), pp. 702712.
    22. 22)
      • 35. Green, D.R., Evan, G.I.: ‘A matter of life and death’, Cancer Cell, 2002, 1, (1), pp. 1930.
    23. 23)
      • 11. Zhang, X.-P., Liu, F., Wang, W.: ‘Two-phase dynamics of p53 in the DNA damage response’, Proc. Natl Acad. Sci. USA, 2011, 108, (22), pp. 89908995.
    24. 24)
      • 39. Richter, M., Dayaram, T., Gilmartin, A., et al: ‘WIP1 phosphatase as a potential therapeutic target in neuroblastoma’, PLoS One, 2015, 10, (2), p. e0115635.
    25. 25)
      • 30. Avcu, N., Alyürük, H., Demir, G.K., et al: ‘Determining the bistability parameter ranges of artificially induced lac operon using the root locus method’, Comput. Biol. Med., 2015, 61, (1), pp. 7591.
    26. 26)
      • 15. Volterra, V.: ‘Variazioni e fluttuazioni del numero d'individui in specie animali conviventi’ (C. Ferrari, 1927).
    27. 27)
      • 36. Lowe, J., Cha, H., Lee, M.-O., et al: ‘Regulation of the Wip1 phosphatase and its effects on the stress response’, Front. Biosci., 2012, 17, (1), p. 1480.
    28. 28)
      • 10. Zhang, T., Brazhnik, P., Tyson, J.J.: ‘Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis’, Cell Cycle, 2007, 6, (1), pp. 8594.
    29. 29)
      • 6. Purvis, J.E., Karhohs, K.W., Mock, C., et al: ‘P53 dynamics control cell fate’, Science, 2012, 336, (6087), pp. 14401444.
    30. 30)
      • 8. Branzei, D., Foiani, M.: ‘Regulation of DNA repair throughout the cell cycle’, Nat. Rev., 2008, 9, (4), p. 297.
    31. 31)
      • 12. Demirkıran, G., Demir, G., Güzeliş, C.: ‘Revealing determinants of two-phase dynamics of P53 network under gamma irradiation based on a reduced 2-D relaxation oscillator model’, IET Syst. Biol., 2018, 12, (1), pp. 2638.
    32. 32)
      • 26. Shreeram, S., Hee, W.K., Demidov, O.N., et al: ‘Regulation of ATM/ P53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase’, J. Exp. Med., 2006, 203, (13), pp. 27932799.
    33. 33)
      • 41. Lavin, M., Kozlov, S.: ‘ATM activation and DNA damage response’, Cell Cycle, 2007, 6, (8), pp. 931942.
    34. 34)
      • 21. Rothkamm, K., Krüger, I., Thompson, L., et al: ‘Pathways of DNA double-strand break repair during the mammalian cell cycle’, Mol. Cell. Biol., 2003, 23, (16), pp. 57065715.
    35. 35)
      • 25. Shreeram, S., Demidov, O., Hee, W., et al: ‘Wip1 phosphatase modulates ATM-dependent signaling pathways’, Mol. Cell, 2006, 23, (5), pp. 757764.
    36. 36)
      • 29. Sun, T., Cui, J.: ‘Dynamics of P53 in response to DNA damage: mathematical modeling and perspective’, Prog. Biophys. Mol. Biol., 2015, 119, (2), pp. 175182.
    37. 37)
      • 37. Xu, Y., Baltimore, D.: ‘Dual roles of ATM in the cellular response to radiation and in cell growth control’, Genes Dev., 1996, 10, (19), pp. 24012410.
    38. 38)
      • 24. Batchelor, E., Loewer, A., Mock, C., et al: ‘Stimulus-dependent dynamics of p53 in single cells’, Mol. Syst. Biol., 2011, 7, (1), p. 488.
    39. 39)
      • 34. Castellino, R.C., Bortoli, M.D., Lu, X., et al: ‘Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D’, J. Neurooncol., 2008, 86, (3), pp. 245256.
    40. 40)
      • 14. Lotka, A.: ‘Contribution to the theory of periodic reactions’, J. Phys. Chem., 1910, 14, (3), pp. 271274.
    41. 41)
      • 18. Kurz, E.U., Lees-Miller, S.P.: ‘DNA damage-induced activation of ATM and ATM-dependent signaling pathways’, DNA Repair, 2004, 3, (8), pp. 889900.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0077
Loading

Related content

content/journals/10.1049/iet-syb.2017.0077
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address