http://iet.metastore.ingenta.com
1887

Two-dimensional polynomial type canonical relaxation oscillator model for p53 dynamics

Two-dimensional polynomial type canonical relaxation oscillator model for p53 dynamics

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

p53 network, which is responsible for DNA damage response of cells, exhibits three distinct qualitative behaviours; low state, oscillation and high state, which are associated with normal cell cycle progression, cell cycle arrest and apoptosis, respectively. The experimental studies demonstrate that these dynamics of p53 are due to the ATM and Wip1 interaction. This paper proposes a simple two-dimensional canonical relaxation oscillator model based on the identified topological structure of ATM and Wip1 interaction underlying these qualitative behaviours of p53 network. The model includes only polynomial terms that have the interpretability of known ATM and Wip1 interaction. The introduced model is useful for understanding relaxation oscillations in gene regulatory networks. Through mathematical analysis, we investigate the roles of ATM and Wip1 in forming of these three essential behaviours, and show that ATM and Wip1 constitute the core mechanism of p53 dynamics. In agreement with biological findings, we show that Wip1 degradation term is a highly sensitive parameter, possibly related to mutations. By perturbing the corresponding parameters, our model characterizes some mutations such as ATM deficiency and Wip1 overexpression. Finally, we provide intervention strategies considering our observation that Wip1 seems to be an important target to conduct therapies for these mutations.

References

    1. 1)
      • 1. Murray-Zmijewski, F., Slee, E.A., Lu, X.: ‘A complex barcode underlies the heterogeneous response of p53 to stress’, Nat. Rev. Mol. Cell Biol., 2008, 9, (9), pp. 702712.
    2. 2)
      • 2. Michael, D., Oren, M.: ‘The p53–Mdm2 module and the ubiquitin system’, Semin. Cancer Biol., 2003, 13, pp. 4958.
    3. 3)
      • 3. Lahav, G., Rosenfeld, N., Sigal, A., et al: ‘Dynamics of the p53-Mdm2 feedback loop in individual cells’, Nat. Genet., 2004, 36, (2), pp. 147150.
    4. 4)
      • 4. Toettcher, J., Loewer, A., Ostheimer, G., et al: ‘Distinct mechanisms act in concert to mediate cell cycle arrest’, Proc. Natl Acad. Sci. USA, 2009, 106, (3), pp. 785790.
    5. 5)
      • 5. Vousden, K., Lane, D.: ‘P53 in health and disease’, Mol. Cell Biol., 2007, 8, (4), p. 275.
    6. 6)
      • 6. Purvis, J.E., Karhohs, K.W., Mock, C., et al: ‘P53 dynamics control cell fate’, Science, 2012, 336, (6087), pp. 14401444.
    7. 7)
      • 7. Purvis, J., Lahav, G.: ‘Encoding and decoding cellular information through signaling dynamics’, Cell, 2013, 152, (5), pp. 945956.
    8. 8)
      • 8. Branzei, D., Foiani, M.: ‘Regulation of DNA repair throughout the cell cycle’, Nat. Rev., 2008, 9, (4), p. 297.
    9. 9)
      • 9. Batchelor, E., Mock, C.S., Bhan, I., et al: ‘Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage’, Mol. Cell, 2008, 30, (3), pp. 277289.
    10. 10)
      • 10. Zhang, T., Brazhnik, P., Tyson, J.J.: ‘Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis’, Cell Cycle, 2007, 6, (1), pp. 8594.
    11. 11)
      • 11. Zhang, X.-P., Liu, F., Wang, W.: ‘Two-phase dynamics of p53 in the DNA damage response’, Proc. Natl Acad. Sci. USA, 2011, 108, (22), pp. 89908995.
    12. 12)
      • 12. Demirkıran, G., Demir, G., Güzeliş, C.: ‘Revealing determinants of two-phase dynamics of P53 network under gamma irradiation based on a reduced 2-D relaxation oscillator model’, IET Syst. Biol., 2018, 12, (1), pp. 2638.
    13. 13)
      • 13. Voit, E., Chou, I.-C.: ‘Parameter estimation in canonical biological systems models’, Int. J. Syst. Synth. Biol., 2010, 1, (1), pp. 119.
    14. 14)
      • 14. Lotka, A.: ‘Contribution to the theory of periodic reactions’, J. Phys. Chem., 1910, 14, (3), pp. 271274.
    15. 15)
      • 15. Volterra, V.: ‘Variazioni e fluttuazioni del numero d'individui in specie animali conviventi’ (C. Ferrari, 1927).
    16. 16)
      • 16. Goodwin, B.: ‘Oscillatory behavior in enzymatic control processes’, Adv. Enzyme Regul., 1965, 3, (1), pp. 425437.
    17. 17)
      • 17. FitzHugh, R.: ‘Impulses and physiological states in theoretical models of nerve membrane’, Biophys. J., 1961, 1, (6), p. 445.
    18. 18)
      • 18. Kurz, E.U., Lees-Miller, S.P.: ‘DNA damage-induced activation of ATM and ATM-dependent signaling pathways’, DNA Repair, 2004, 3, (8), pp. 889900.
    19. 19)
      • 19. Pandita, T., Lieberman, H., Lim, D., et al: ‘Ionizing radiation activates the ATM kinase throughout the cell cycle’, Oncogene, 2000, 19, (11), p. 1386.
    20. 20)
      • 20. Ma, L., Wagner, J., Rice, J.J., et al: ‘A plausible model for the digital response of p53 to DNA damage’, Proc. Natl Acad. Sci. USA, 2005, 102, (40), pp. 1426614271.
    21. 21)
      • 21. Rothkamm, K., Krüger, I., Thompson, L., et al: ‘Pathways of DNA double-strand break repair during the mammalian cell cycle’, Mol. Cell. Biol., 2003, 23, (16), pp. 57065715.
    22. 22)
      • 22. Bakkenist, C., Kastan, M.: ‘DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation’, Nature, 2003, 421, (6922), p. 499.
    23. 23)
      • 23. Mouri, K., Nacher, J.C., Akutsu, T.: ‘A mathematical model for the detection mechanism of DNA double-strand breaks depending on autophosphorylation of ATM’, PLoS One, 2009, 4, (4), p. e5131.
    24. 24)
      • 24. Batchelor, E., Loewer, A., Mock, C., et al: ‘Stimulus-dependent dynamics of p53 in single cells’, Mol. Syst. Biol., 2011, 7, (1), p. 488.
    25. 25)
      • 25. Shreeram, S., Demidov, O., Hee, W., et al: ‘Wip1 phosphatase modulates ATM-dependent signaling pathways’, Mol. Cell, 2006, 23, (5), pp. 757764.
    26. 26)
      • 26. Shreeram, S., Hee, W.K., Demidov, O.N., et al: ‘Regulation of ATM/ P53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase’, J. Exp. Med., 2006, 203, (13), pp. 27932799.
    27. 27)
      • 27. Darlington, Y., Nguyen, T., Moon, S., et al: ‘Absence of Wip1 partially rescues ATM deficiency phenotypes in mice’, Oncogene, 2012, 31, (9), pp. 11551165.
    28. 28)
      • 28. Xia, Y., Ongusaha, P., Lee, S., et al: ‘Loss of Wip1 sensitizes cells to stress-and DNA damage-induced apoptosis’, J. Biol. Chem., 2009, 284, (26), pp. 1742817437.
    29. 29)
      • 29. Sun, T., Cui, J.: ‘Dynamics of P53 in response to DNA damage: mathematical modeling and perspective’, Prog. Biophys. Mol. Biol., 2015, 119, (2), pp. 175182.
    30. 30)
      • 30. Avcu, N., Alyürük, H., Demir, G.K., et al: ‘Determining the bistability parameter ranges of artificially induced lac operon using the root locus method’, Comput. Biol. Med., 2015, 61, (1), pp. 7591.
    31. 31)
      • 31. Avcu, N., Demir, G., Pekergin, F., et al: ‘Discriminant-based bistability analysis of a TMG-induced lac operon model supported with boundedness and local stability results’, Turk. J. Electr. Eng. Comput. Sci., 2016, 24, (3), pp. 719732.
    32. 32)
      • 32. Teschl, G.: ‘Ordinary differential equations and dynamical systems’ (American Mathematical Society, Providence, 2012).
    33. 33)
      • 33. Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., et al: ‘Oscillations and variability in the p53 system’, Mol. Syst. Biol., 2006, 2, (1), p. 1.
    34. 34)
      • 34. Castellino, R.C., Bortoli, M.D., Lu, X., et al: ‘Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D’, J. Neurooncol., 2008, 86, (3), pp. 245256.
    35. 35)
      • 35. Green, D.R., Evan, G.I.: ‘A matter of life and death’, Cancer Cell, 2002, 1, (1), pp. 1930.
    36. 36)
      • 36. Lowe, J., Cha, H., Lee, M.-O., et al: ‘Regulation of the Wip1 phosphatase and its effects on the stress response’, Front. Biosci., 2012, 17, (1), p. 1480.
    37. 37)
      • 37. Xu, Y., Baltimore, D.: ‘Dual roles of ATM in the cellular response to radiation and in cell growth control’, Genes Dev., 1996, 10, (19), pp. 24012410.
    38. 38)
      • 38. Rayter, S., Elliott, R., Travers, J., et al: ‘A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D’, Oncogene, 2008, 27, (8), pp. 10361044.
    39. 39)
      • 39. Richter, M., Dayaram, T., Gilmartin, A., et al: ‘WIP1 phosphatase as a potential therapeutic target in neuroblastoma’, PLoS One, 2015, 10, (2), p. e0115635.
    40. 40)
      • 40. Delia, D., Fontanella, E., Ferrario, C., et al: ‘DNA damage-induced cell-cycle phase regulation of p53 and p21waf1 in normal and ATM-defective cells’, Oncogene, 2003, 22, (49), pp. 78667869.
    41. 41)
      • 41. Lavin, M., Kozlov, S.: ‘ATM activation and DNA damage response’, Cell Cycle, 2007, 6, (8), pp. 931942.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0077
Loading

Related content

content/journals/10.1049/iet-syb.2017.0077
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address