Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Topological alternate centrality measure capturing drug targets in the network of MAPK pathways

A new centrality of the nodes in the network is proposed called alternate centrality, which can isolate effective drug targets in the complex signalling network. Alternate centrality metric defined over the network substructure (four nodes – motifs). The nodes involving in alternative activation in the motifs gain in metric values. Targeting high alternative centrality nodes hypothesised to be destructive free to the network due to their alternative activation mechanism. Overlapping and crosstalk among the gene products in the conserved network of MAPK pathways selected for the study. In silico knock-out of high alternate centrality nodes causing rewiring in the network is investigated using MCF-7 breast cancer cell line-based data. Degree of top alternate centrality nodes lies between the degree of bridging and pagerank nodes. Node deletion of high alternate centrality on the centralities such as eccentricity, closeness, betweenness, stress, centroid and radiality causes low perturbation. The authors identified the following alternate centrality nodes ERK1, ERK2, MEKK2, MKK5, MKK4, MLK3, MLK2, MLK1, MEKK4, MEKK1, TAK1, P38alpha, ZAK, DLK, LZK, MLTKa/b and P38beta as efficient drug targets for breast cancer. Alternate centrality identifies effective drug targets and is free from intertwined biological processes and lethality.

References

    1. 1)
      • 40. Nagashima, T., Shimodaira, H., Ide, K., et al: ‘Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation’, J. Biol. Chem., 2007, 282, (6), pp. 40454056.
    2. 2)
      • 15. Stephenson, K., Zelen, M.: ‘Rethinking centrality: methods and examples’, Soc. Netw., 1989, 11, (1), pp. 137.
    3. 3)
      • 33. Zhou, H., Gao, M., Skolnick, J.: ‘Comprehensive prediction of drug-protein interactions and side effects for the human proteome’, Sci. Rep., 2015, pp. 11090.
    4. 4)
      • 31. MD Aksam, V.K., Chandrasekaran, V.M., Pandurangan, S.: ‘Identification of cluster of proteins in the network of MAPK pathways as cancer drug targets’, Informatics Med. Unlocked, 2017, 9, pp. 8692.
    5. 5)
      • 39. Finn, R.D., Attwood, T.K., Babbitt, P.C., et al: ‘Interpro in 2017–beyond protein family and domain annotations’, Nucleic Acids Res., 2016, 45, (D1), pp. D190D199.
    6. 6)
      • 13. Shimbel, A.: ‘Structural parameters of communication networks’, Bull. Math. Biophys., 1953, 15, (4), pp. 501507.
    7. 7)
      • 44. Ortiz-Ruiz, M.J., Álvarez-Fernández, S., Parrott, T., et al: ‘Therapeutic potential of ERK5 targeting in triple negative breast cancer’, Oncotarget, 2014, 5, (22), p. 11308.
    8. 8)
      • 8. Onakpoya, I.J., Heneghan, C.J., Aronson, J.K.: ‘Post-marketing withdrawal of anti-obesity medicinal products because of adverse drug reactions: a systematic review’, BMC Med., 2016, 14, (1), p. 191.
    9. 9)
      • 26. Szklarczyk, D., Franceschini, A., Kuhn, M., et al: ‘The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored’, Nucleic Acids Res., 2010, 39, (Suppl_1), pp. D561D568.
    10. 10)
      • 43. Shen, Q., Brown, P.H.: ‘Novel agents for the prevention of breast cancer: targeting transcription factors and signal transduction pathways’, J. Mammary Gland Biol. Neoplasia, 2003, 8, (1), pp. 4573.
    11. 11)
      • 18. Brin, S., Page, L.: ‘Reprint of: The anatomy of a large-scale hypertextual web search engine’, Comput. Netw., 2012, 56, (18), pp. 38253833.
    12. 12)
      • 29. ‘The ENCODE Project: ENCyclopedia Of DNA Elements’. Available at www.encodeproject.org/experiments/ENCSR000EPJ/.
    13. 13)
      • 5. Downward, J.: ‘The ins and outs of signalling’, Nature, 2001, 411, (6839), p. 759.
    14. 14)
      • 7. Siramshetty, V.B., Nickel, J., Omieczynski, C., et al: ‘WITHDRAWN–a resource for withdrawn and discontinued drugs’, Nucleic Acids Res., 2016, 44, (D1), pp. D1080D1086.
    15. 15)
      • 25. Tuncbag, N., Gosline, S.J.C., Kedaigle, A., et al: ‘Network-based interpretation of diverse high-throughput datasets through the omics integrator software package’, PLoS Comput. Biol., 2016, 12, (4), p. e1004879.
    16. 16)
      • 22. Smoot, M.E., Ono, K., Ruscheinski, J., et al: ‘Cytoscape 2.8: new features for data integration and network visualization’, Bioinformatics, 2010, 27, (3), pp. 431432.
    17. 17)
      • 42. Gutierrez, M.C., Detre, S., Johnston, S., et al: ‘Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase’, J. Clin. Oncol., 2005, 23, (11), pp. 24692476.
    18. 18)
      • 35. Kirouac, D.C., Saez-Rodriguez, J., Swantek, J., et al: ‘Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks’, BMC Syst. Biol., 2012, 6, (1), p. 29.
    19. 19)
      • 17. Bonacich, P.: ‘Factoring and weighting approaches to status scores and clique identification’, J. Math. Sociol., 1972, 2, (1), pp. 113120.
    20. 20)
      • 45. Mingo-Sion, A.M., Marietta, P.M., Koller, E., et al: ‘Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells’, Oncogene, 2004, 23, (2), p. 596.
    21. 21)
      • 12. Proctor, C.H., Loomis, C.: ‘Analysis of sociometric data’ (Dryden Press, New York, NY, USA, 1951).
    22. 22)
      • 37. Amberger, J.S., Bocchini, C.A., Schiettecatte, F., et al: ‘OMIM. org: online mendelian inheritance in man (OMIM{®}), an online catalog of human genes and genetic disorders’, Nucleic Acids Res., 2014, 43, (D1), pp. D789D798.
    23. 23)
      • 6. Giancotti, F.G.: ‘Deregulation of cell signaling in cancer’, FEBS Lett., 2014, 588, (16), pp. 25582570.
    24. 24)
      • 30. MD Aksam, V.K., Chandrasekaran, V.M., Pandurangan, S.: ‘Hub nodes in the network of human mitogen-activated protein kinase (MAPK) pathways: characteristics and potential as drug targets’, Informatics Med. Unlocked, 2017, 9, (2017), pp. 173180.
    25. 25)
      • 20. Schreiber, F., Schwöbbermeyer, H.: ‘MAVisto: a tool for the exploration of network motifs’, Bioinformatics, 2005, 21, (17), pp. 35723574.
    26. 26)
      • 11. Sundaramurthy, P., Gakkhar, S.: ‘Dynamic modeling and simulation of JNK and p38 kinase cascades with feedbacks and crosstalks’, IEEE Trans. Nanobiosci., 2010, 9, (4), pp. 225231.
    27. 27)
      • 41. Barrett, T., Wilhite, S.E., Ledoux, P., et al: ‘NCBI GEO: archive for functional genomics data sets–update’, Nucleic Acids Res., 2012, 41, (D1), pp. D991D995.
    28. 28)
      • 9. Rawson, N.S.B.: ‘Drug safety: withdrawn medications are only part of the picture’, BMC Med., 2016, 14, (1), p. 28.
    29. 29)
      • 46. Wang, Z., Zhang, H., Shi, M., et al: ‘TAK1 inhibitor NG25 enhances doxorubicin-mediated apoptosis in breast cancer cells’, Sci. Rep., 2016, 6, p. 32737.
    30. 30)
      • 27. Sacco, F., Silvestri, A., Posca, D., et al: ‘Deep proteomics of breast cancer cells reveals that metformin rewires signaling networks away from a pro-growth state’, Cell Syst., 2016, 2, (3), pp. 159171.
    31. 31)
      • 32. Kitano, H.: ‘Biological robustness’, Nat. Rev. Genet., 2004, 5, (11), pp. 826837.
    32. 32)
      • 36. Dennis, G., Sherman, B.T., Hosack, D.A., et al: ‘DAVID: database for annotation, visualization, and integrated discovery’, Genome Biol., 2003, 4, (9), p. R60.
    33. 33)
      • 38. Consortium, G.O., others: ‘Gene ontology consortium: going forward’, Nucleic Acids Res., 2015, 43, (D1), pp. D1049D1056.
    34. 34)
      • 23. Scardoni, G., Montresor, A., Tosadori, G., et al: ‘Node interference and robustness: performing virtual knock-out experiments on biological networks: the case of leukocyte integrin activation network’, PLoS One, 2014, 9, (2), p. e88938.
    35. 35)
      • 10. Onakpoya, I.J., Heneghan, C.J., Aronson, J.K.: ‘Worldwide withdrawal of medicinal products because of adverse drug reactions: a systematic review and analysis’, Crit. Rev. Toxicol., 2016, 46, (6), pp. 477489.
    36. 36)
      • 19. Hwang, W., Kim, T., Ramanathan, M., et al: ‘Bridging centrality: graph mining from element level to group level’. Proc. 14th ACM SIGKDD int. Conf. Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 2008, pp. 336344.
    37. 37)
      • 34. Vinayagam, A., Stelzl, U., Foulle, R., et al: ‘A directed protein interaction network for investigating intracellular signal transduction’, Sci. Signal., 2011, 4, (189), pp. rs8rs8.
    38. 38)
      • 2. Erler, J.T., Linding, R.: ‘Network-based drugs and biomarkers’, J. Pathol., 2010, 220, (2), pp. 290296.
    39. 39)
      • 4. Farkas, I.J., Korcsmáros, T., Kovács, I.A., et al: ‘Network-based tools for the identification of novel drug targets’, Sci. Signal., 2011, 4, (173), pp. pt3pt3.
    40. 40)
      • 3. Arrell, D.K., Terzic, A.: ‘Network systems biology for drug discovery’, Clin. Pharmacol. Ther., 2010, 88, (1), pp. 120125.
    41. 41)
      • 24. Scardoni, G., Laudanna, C.: ‘Identifying critical traffic jam areas with node centralities interference and robustness’, Networks Heterog. Media, 2012, 7, (3), pp. 463471.
    42. 42)
      • 21. Tran, N.T.L., Mohan, S., Xu, Z., et al: ‘Current innovations and future challenges of network motif detection’, Brief. Bioinform., 2014, 16, (3), pp. 497525.
    43. 43)
      • 14. Brandes, U., Fleischer, D.: ‘Centrality measures based on current flow’. STACS, Stuttgart, Germany, 2005, pp. 533544.
    44. 44)
      • 1. Hwang, W.-C., Zhang, A., Ramanathan, M.: ‘Identification of information flow-modulating drug targets: a novel bridging paradigm for drug discovery’, Clin. Pharmacol. Ther., 2008, 84, (5), pp. 563572.
    45. 45)
      • 16. Newman, M.E.J.: ‘A measure of betweenness centrality based on random walks’, Soc. Netw., 2005, 27, (1), pp. 3954.
    46. 46)
      • 47. Chen, L., Mayer, J.A., Krisko, T.I., et al: ‘Inhibition of the p38 kinase suppresses the proliferation of human ER-negative breast cancer cells’, Cancer Res., 2009, 69, (23), pp. 88538861.
    47. 47)
      • 28. Rosenbloom, K.R., Sloan, C.A., Malladi, V.S., et al: ‘ENCODE data in the UCSC genome browser: year 5 update’, Nucleic Acids Res., 2012, 41, (D1), pp. D56D63.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0058
Loading

Related content

content/journals/10.1049/iet-syb.2017.0058
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address