Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Revealing determinants of two-phase dynamics of P53 network under gamma irradiation based on a reduced 2D relaxation oscillator model

This study proposes a two-dimensional (2D) oscillator model of p53 network, which is derived via reducing the multidimensional two-phase dynamics model into a model of ataxia telangiectasia mutated (ATM) and Wip1 variables, and studies the impact of p53-regulators on cell fate decision. First, the authors identify a 6D core oscillator module, then reduce this module into a 2D oscillator model while preserving the qualitative behaviours. The introduced 2D model is shown to be an excitable relaxation oscillator. This oscillator provides a mechanism that leads diverse modes underpinning cell fate, each corresponding to a cell state. To investigate the effects of p53 inhibitors and the intrinsic time delay of Wip1 on the characteristics of oscillations, they introduce also a delay differential equation version of the 2D oscillator. They observe that the suppression of p53 inhibitors decreases the amplitudes of p53 oscillation, though the suppression increases the sustained level of p53. They identify Wip1 and P53DINP1 as possible targets for cancer therapies considering their impact on the oscillator, supported by biological findings. They model some mutations as critical changes of the phase space characteristics. Possible cancer therapeutic strategies are then proposed for preventing these mutations’ effects using the phase space approach.

References

    1. 1)
      • 20. FitzHugh, R.: ‘Impulses and physiological states in theoretical models of nerve membrane’, Biophys. J., 1961, 1, (6), p. 445.
    2. 2)
      • 46. Wang, H., Liu, Z., Qiu, L., et al: ‘Knockdown of Wip1 enhances sensitivity to radiation in hela cells through activation of p38 MAPK’, Oncol. Res. Featuring Preclin. Clin. Cancer Ther., 2015, 22, (4), pp. 225233.
    3. 3)
      • 14. Harris, S., Levine, A.: ‘The p53 pathway: positive and negative feedback loops’, Oncogene, 2005, 24, (17), p. 2899.
    4. 4)
      • 59. Bensussen, A., Díaz, J.: ‘Dynamical aspects of apoptosis’, in Nenoi, M. (Ed.): ‘Current topics in ionizing radiation research’ (InTech, Rijeka, Croatia, 2012), pp. 243268.
    5. 5)
      • 29. Nakamura, Y., Arakawa, H.: ‘p53-dependent apoptosis-inducing protein and method of screening for apoptosis regulator’. US Patent 7,371,835, May 2008.
    6. 6)
      • 27. He, Q., Liu, Z.: ‘Investigation of oscillation accumulation triggered genetic switch in gene regulatory networks’, J. Theor. Biol., 2014, 353, pp. 6166.
    7. 7)
      • 11. Mihara, M., Erster, S., Zaika, A., et al: ‘p53 has a direct apoptogenic role at the mitochondria’, Mol. Cell, 2003, 11, pp. 577590.
    8. 8)
      • 65. Hunziker, A., Jensen, M., Krishna, S.: ‘Stress-specific response of the p53-Mdm2 feedback loop’, BMC Syst. Biol., 2010, 4, p. 94.
    9. 9)
      • 33. Lowe, J., Cha, H., Lee, M.-O., et al: ‘Regulation of the Wip1 phosphatase and its effects on the stress response’, Front. Biosci. J. Virtual Libr., 2012, 17, p. 1480.
    10. 10)
      • 18. Krishna, S., Semsey, S., Jensen, M.H.: ‘Frustrated bistability as a means to engineer oscillations in biological systems’, Phys. Biol., 2009, 6, (3), p. 036009.
    11. 11)
      • 63. Hat, B., Kochańczyk, M., Bogdał, M., et al: ‘Feedbacks, bifurcations, and cell fate decision-making in the p53 system’, PLoS Comput. Biol., 2016, 12, (2), p. 1004787.
    12. 12)
      • 8. Gartel, A.L., Radhakrishnan, S.K.: ‘Lost in transcription: p21 repression, mechanisms, and consequences’, Cancer Res., 2005, 65, pp. 39803985.
    13. 13)
      • 10. Marchenko, N.D., Zaika, A., Moll, U.M.: ‘Death signal-induced localization of p53 protein to mitochondria a potential role in apoptotic signaling’, J. Biol. Chem., 2000, 275, (21), pp. 1620216212.
    14. 14)
      • 45. Yi, W., Hu, X., Chen, Z., et al: ‘Phosphatase Wip1 controls antigen-independent B-cell development in a p53-dependent manner’, Blood, 2015, 126, (5), pp. 620628.
    15. 15)
      • 2. Lahav, G., Rosenfeld, N., Sigal, A., et al: ‘Dynamics of the p53-Mdm2 feedback loop in individual cells’, Nat. Genet., 2004, 36, (2), pp. 147150.
    16. 16)
      • 37. Bulavin, D.V., Demidov, O.N., Saito, S., et al: ‘Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity’, Nat. Genet., 2002, 31, (2), pp. 210215.
    17. 17)
      • 22. Jonak, K., Kurpas, M., Szoltysek, K., et al: ‘A novel mathematical model of ATM/p53/NF-κ B pathways points to the importance of the DDR switch-off mechanisms’, BMC Syst. Biol., 2016, 10, (1), p. 75.
    18. 18)
      • 13. Shreeram, S., Demidov, O., Hee, W., et al: ‘Wip1 phosphatase modulates ATM-dependent signaling pathways’, Mol. Cell, 2006, 23, pp. 757764.
    19. 19)
      • 53. Lavin, M., Kozlov, S.: ‘ATM activation and DNA damage response’, Cell Cycle, 2007, 6, (8), pp. 931942.
    20. 20)
      • 64. Leenders, G., Tuszynski, J.: ‘Stochastic and deterministic models of cellular p53 regulation’, Front. Oncol., 2013, 3, p. 3.
    21. 21)
      • 5. Purvis, J.E., Karhohs, K.W., Mock, C., et al: ‘p53 dynamics control cell fate’, Science, 2012, 336, (6087), pp. 14401444.
    22. 22)
      • 23. Kozyreff, G., Erneux, T.: ‘Singular Hopf bifurcation in a differential equation with large state-dependent delay’, R. Soc., 2014, 470, (2162), p. 20130596.
    23. 23)
      • 48. Rayter, S., Elliott, R., Travers, J., et al: ‘A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D’, Oncogene, 2008, 27, (8), pp. 10361044.
    24. 24)
      • 39. Green, D.R., Evan, G.I.: ‘A matter of life and death’, Cancer Cell, 2002, 1, (1), pp. 1930.
    25. 25)
      • 58. Braithwaite, A.W., Prives, C.L.: ‘p53: more research and more questions’, Cell Death Differ., 2006, 13, pp. 877880.
    26. 26)
      • 55. Reifenberger, G., Liu, L., Ichimura, K., et al: ‘Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations’, Cancer Res., 2003, 53, (12), pp. 27362739.
    27. 27)
      • 57. El-Deiry, W.: ‘Regulation ofp53 downstream genes’, Semin. Cancer Biol., 1998, 8, (5), pp. 345357.
    28. 28)
      • 49. Tan, D., Lambros, M., Rayter, S., et al: ‘PPM1D is a potential therapeutic target in ovarian clear cell carcinomas’, Clin. Cancer Res., 2009, 15, (7), pp. 22692280.
    29. 29)
      • 35. Saito-Ohara, F., Imoto, I., Inoue, J., et al: ‘PPM1D is a potential target for 17q gain in neuroblastoma’, Cancer Res., 2003, 63, (8), pp. 18761883.
    30. 30)
      • 34. Rauta, J., Alarmo, E.-L., Kauraniemi, P., et al: ‘The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours’, Breast Cancer Res. Treat., 2006, 95, (3), pp. 257263.
    31. 31)
      • 12. Loewer, A., Batchelor, E., Gaglia, G., et al: ‘Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells’, Cell, 2010, 142, pp. 89100.
    32. 32)
      • 16. Kim, J., Jackson, T.: ‘Mechanisms that enhance sustainability of p53 pulses’, PLoS One, 2013, 8, (6), p. e65242.
    33. 33)
      • 31. Castellino, R.C., Bortoli, M.D., Lu, X., et al: ‘Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D’, J. Neurooncol., 2008, 86, (3), pp. 245256.
    34. 34)
      • 51. Yoda, A., Toyoshima, K., Watanabe, Y., et al: ‘Arsenic trioxide augments Chk2/p53-mediated apoptosis by inhibiting oncogenic Wip1 phosphatase’, J. Biol. Chem., 2008, 283, (27), pp. 1896918979.
    35. 35)
      • 25. Brown, D.R., Thomas, C.A., Deb, S.P.: ‘The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis’, EMBO J., 1998, 17, (9), pp. 25132525.
    36. 36)
      • 54. Darlington, Y., Nguyen, T., Moon, S., et al: ‘Absence of Wip1 partially rescues ATM deficiency phenotypes in mice’, Oncogene, 2012, 31, (9), pp. 11551165.
    37. 37)
      • 15. Tsai, T., Choi, Y., Ma, W., et al: ‘Robust, tunable biological oscillations from interlinked positive and negative feedback loops’, Science, 2008, 321, (5885), pp. 126129.
    38. 38)
      • 19. Van der Pol, B., Mark, J.V.D.: ‘The heartbeat considered as a relaxation oscillation, and an electrical model of the heart’, Lond. Edinb. Dublin Philos. Mag. J. Sci., 1928, 6, (38), pp. 763775.
    39. 39)
      • 36. Li, J., Yang, Y., Peng, Y., et al: ‘Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23’, Nat. Genet., 2002, 31, (2), p. 133.
    40. 40)
      • 44. Goloudina, A., Tanoue, K., Hammann, A., et al: ‘Wip1 promotes RUNX2-dependent apoptosis in p53-negative tumors and protects normal tissues during treatment with anticancer agents’, Proc. Natl. Acad. Sci., 2012, 109, (2), pp. E68E75.
    41. 41)
      • 17. Zhang, T., Brazhnik, P., Tyson, J.J.: ‘Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis’, Cell Cycle, 2007, 6, (1), pp. 8594.
    42. 42)
      • 61. Kang, T., Sancar, A.: ‘Circadian regulation of DNA excision repair: implications for chrono-chemotherapy’, Cell Cycle, 2009, 8, (11), pp. 16651667.
    43. 43)
      • 7. Lahav, G.: ‘The strength of indecisiveness: oscillatory behavior for better cell fate determination’, Sci. Signal., 2004, 2004, (264), pp. pe55pe55.
    44. 44)
      • 3. Batchelor, E., Mock, C.S., Bhan, I., et al: ‘Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage’, Mol. Cell, 2008, 30, (3), pp. 277289.
    45. 45)
      • 9. Essmann, F., Engels, I.H., Totzke, G., et al: ‘Apoptosis resistance of MCF-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event’, Cancer Res., 2004, 64, (19), pp. 70657072.
    46. 46)
      • 40. Lambros, M., Natrajan, R., Geyer, F., et al: ‘PPM1D gene amplification and overexpression in breast cancer: a qRT-PCR and chromogenic in situ hybridization study’, Mod. Pathol., 2010, 23, (10), pp. 13341345.
    47. 47)
      • 50. Yamaguchi, H., Durell, S., Feng, H., et al: ‘Development of a substrate-based cyclic phosphopeptide inhibitor of protein phosphatase 2Cδ, Wip1’, Biochemistry, 2006, 45, (44), pp. 1319313202.
    48. 48)
      • 4. Sun, T., Cui, J.: ‘Dynamics of P53 in response to DNA damage: mathematical modeling and perspective’, Prog. Biophys. Mol. Biol., 2015, 119, (2), pp. 175182.
    49. 49)
      • 1. Murray-Zmijewski, F., Slee, E.A., Lu, X.: ‘A complex barcode underlies the heterogeneous response of p53 to stress’, Nat. Rev. Mol. Cell Biol., 2008, 9, (9), pp. 702712.
    50. 50)
      • 24. Manfredi, J.J.: ‘The Mdm2–p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor’, Genes Dev., 2010, 24, (15), pp. 15801589.
    51. 51)
      • 38. Xu, Y., Baltimore, D.: ‘Dual roles of ATM in the cellular response to radiation and in cell growth control’, Genes Dev., 1996, 10, (19), pp. 24012410.
    52. 52)
      • 43. Kong, W., Jiang, X., Mercer, W.: ‘Downregulation of Wip-1 phosphatase expression in MCF-7 breast cancer cells enhances doxorubicin-induced apoptosis through p53-mediated transcriptional activation of Bax’, Cancer Biol. Ther., 2009, 8, (6), pp. 555563.
    53. 53)
      • 26. Dang, J., Kuo, M.-L., Eischen, C.M., et al: ‘The RING domain of Mdm2 can inhibit cell proliferation’, Cancer Res., 2002, 62, (4), pp. 12221230.
    54. 54)
      • 21. Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., et al: ‘Oscillations and variability in the p53 system’, Mol. Syst. Biol., 2006, 2, (1), pp. 113.
    55. 55)
      • 62. Lu, X., Ma, O., Nguyen, T., et al: ‘The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop’, Cancer Cell, 2007, 12, (4), pp. 342354.
    56. 56)
      • 47. Belova, G.I., Demidov, O., Fornace, A.J., et al: ‘Chemical inhibition of Wip1 phosphatase contributes to suppression of tumorigenesis’, Cancer Biol. Ther., 2005, 4, (10), pp. 11541158.
    57. 57)
      • 30. Chen, J., Yue, H., Ouyang, Q.: ‘Correlation between oncogenic mutations and parameter sensitivity of the apoptosis pathway model’, PLOS Comput. Biol., 2014, 10, (1), p. e1003451.
    58. 58)
      • 6. Zhang, X.-P., Liu, F., Wang, W.: ‘Two-phase dynamics of p53 in the DNA damage response’, Proc. Natl. Acad. Sci., 2011, 108, (22), pp. 89908995.
    59. 59)
      • 41. Richter, M., Dayaram, T., Gilmartin, A., et al: ‘WIP1 phosphatase as a potential therapeutic target in neuroblastoma’, PLoS One, 2015, 10, (2), p. e0115635.
    60. 60)
      • 32. Fuku, T., Semba, S., Yutori, H., et al: ‘Increased wild-type p53-induced phosphatase 1 (Wip1 or PPM1D) expression correlated with downregulation of checkpoint kinase 2 in human gastric carcinoma’, Pathol. Int., 2007, 57, (9), pp. 566571.
    61. 61)
      • 42. Xia, Y., Ongusaha, P., Lee, S., et al: ‘Loss of Wip1 sensitizes cells to stress-and DNA damage-induced apoptosis’, J. Biol. Chem., 2009, 284, (26), pp. 1742817437.
    62. 62)
      • 56. Kozłowska, E., Puszynski, K.: ‘Application of bifurcation theory and siRNA-based control signal to restore the proper response of cancer cells to DNA damage’, J. Theor. Biol., 2016, 408, pp. 213221.
    63. 63)
      • 60. Sancar, A., Lindsey-Boltz, L.A., Kang, T.H., et al: ‘Circadian clock control of the cellular response to DNA damage’, FEBS Lett., 2010, 584, (12), pp. 26182625.
    64. 64)
      • 52. Delia, D., Fontanella, E., Ferrario, C., et al: ‘DNA damage-induced cell-cycle phase regulation of p53 and p21waf1 in normal and ATM-defective cells’, Oncogene, 2003, 22, (49), pp. 78667869.
    65. 65)
      • 28. Okamura, S., Arakawa, H., Tanaka, T., et al: ‘p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis’, Mol. Cell, 2001, 8, (1), pp. 8594.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0041
Loading

Related content

content/journals/10.1049/iet-syb.2017.0041
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address