http://iet.metastore.ingenta.com
1887

access icon openaccess Revealing determinants of two-phase dynamics of P53 network under gamma irradiation based on a reduced 2D relaxation oscillator model

Loading full text...

Full text loading...

/deliver/fulltext/iet-syb/12/1/IET-SYB.2017.0041.html;jsessionid=1fvt44sce8n6p.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-syb.2017.0041&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Murray-Zmijewski, F., Slee, E.A., Lu, X.: ‘A complex barcode underlies the heterogeneous response of p53 to stress’, Nat. Rev. Mol. Cell Biol., 2008, 9, (9), pp. 702712.
    2. 2)
      • 2. Lahav, G., Rosenfeld, N., Sigal, A., et al: ‘Dynamics of the p53-Mdm2 feedback loop in individual cells’, Nat. Genet., 2004, 36, (2), pp. 147150.
    3. 3)
      • 3. Batchelor, E., Mock, C.S., Bhan, I., et al: ‘Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage’, Mol. Cell, 2008, 30, (3), pp. 277289.
    4. 4)
      • 4. Sun, T., Cui, J.: ‘Dynamics of P53 in response to DNA damage: mathematical modeling and perspective’, Prog. Biophys. Mol. Biol., 2015, 119, (2), pp. 175182.
    5. 5)
      • 5. Purvis, J.E., Karhohs, K.W., Mock, C., et al: ‘p53 dynamics control cell fate’, Science, 2012, 336, (6087), pp. 14401444.
    6. 6)
      • 6. Zhang, X.-P., Liu, F., Wang, W.: ‘Two-phase dynamics of p53 in the DNA damage response’, Proc. Natl. Acad. Sci., 2011, 108, (22), pp. 89908995.
    7. 7)
      • 7. Lahav, G.: ‘The strength of indecisiveness: oscillatory behavior for better cell fate determination’, Sci. Signal., 2004, 2004, (264), pp. pe55pe55.
    8. 8)
      • 8. Gartel, A.L., Radhakrishnan, S.K.: ‘Lost in transcription: p21 repression, mechanisms, and consequences’, Cancer Res., 2005, 65, pp. 39803985.
    9. 9)
      • 9. Essmann, F., Engels, I.H., Totzke, G., et al: ‘Apoptosis resistance of MCF-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event’, Cancer Res., 2004, 64, (19), pp. 70657072.
    10. 10)
      • 10. Marchenko, N.D., Zaika, A., Moll, U.M.: ‘Death signal-induced localization of p53 protein to mitochondria a potential role in apoptotic signaling’, J. Biol. Chem., 2000, 275, (21), pp. 1620216212.
    11. 11)
      • 11. Mihara, M., Erster, S., Zaika, A., et al: ‘p53 has a direct apoptogenic role at the mitochondria’, Mol. Cell, 2003, 11, pp. 577590.
    12. 12)
      • 12. Loewer, A., Batchelor, E., Gaglia, G., et al: ‘Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells’, Cell, 2010, 142, pp. 89100.
    13. 13)
      • 13. Shreeram, S., Demidov, O., Hee, W., et al: ‘Wip1 phosphatase modulates ATM-dependent signaling pathways’, Mol. Cell, 2006, 23, pp. 757764.
    14. 14)
      • 14. Harris, S., Levine, A.: ‘The p53 pathway: positive and negative feedback loops’, Oncogene, 2005, 24, (17), p. 2899.
    15. 15)
      • 15. Tsai, T., Choi, Y., Ma, W., et al: ‘Robust, tunable biological oscillations from interlinked positive and negative feedback loops’, Science, 2008, 321, (5885), pp. 126129.
    16. 16)
      • 16. Kim, J., Jackson, T.: ‘Mechanisms that enhance sustainability of p53 pulses’, PLoS One, 2013, 8, (6), p. e65242.
    17. 17)
      • 17. Zhang, T., Brazhnik, P., Tyson, J.J.: ‘Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis’, Cell Cycle, 2007, 6, (1), pp. 8594.
    18. 18)
      • 18. Krishna, S., Semsey, S., Jensen, M.H.: ‘Frustrated bistability as a means to engineer oscillations in biological systems’, Phys. Biol., 2009, 6, (3), p. 036009.
    19. 19)
      • 19. Van der Pol, B., Mark, J.V.D.: ‘The heartbeat considered as a relaxation oscillation, and an electrical model of the heart’, Lond. Edinb. Dublin Philos. Mag. J. Sci., 1928, 6, (38), pp. 763775.
    20. 20)
      • 20. FitzHugh, R.: ‘Impulses and physiological states in theoretical models of nerve membrane’, Biophys. J., 1961, 1, (6), p. 445.
    21. 21)
      • 21. Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., et al: ‘Oscillations and variability in the p53 system’, Mol. Syst. Biol., 2006, 2, (1), pp. 113.
    22. 22)
      • 22. Jonak, K., Kurpas, M., Szoltysek, K., et al: ‘A novel mathematical model of ATM/p53/NF-κ B pathways points to the importance of the DDR switch-off mechanisms’, BMC Syst. Biol., 2016, 10, (1), p. 75.
    23. 23)
      • 23. Kozyreff, G., Erneux, T.: ‘Singular Hopf bifurcation in a differential equation with large state-dependent delay’, R. Soc., 2014, 470, (2162), p. 20130596.
    24. 24)
      • 24. Manfredi, J.J.: ‘The Mdm2–p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor’, Genes Dev., 2010, 24, (15), pp. 15801589.
    25. 25)
      • 25. Brown, D.R., Thomas, C.A., Deb, S.P.: ‘The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis’, EMBO J., 1998, 17, (9), pp. 25132525.
    26. 26)
      • 26. Dang, J., Kuo, M.-L., Eischen, C.M., et al: ‘The RING domain of Mdm2 can inhibit cell proliferation’, Cancer Res., 2002, 62, (4), pp. 12221230.
    27. 27)
      • 27. He, Q., Liu, Z.: ‘Investigation of oscillation accumulation triggered genetic switch in gene regulatory networks’, J. Theor. Biol., 2014, 353, pp. 6166.
    28. 28)
      • 28. Okamura, S., Arakawa, H., Tanaka, T., et al: ‘p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis’, Mol. Cell, 2001, 8, (1), pp. 8594.
    29. 29)
      • 29. Nakamura, Y., Arakawa, H.: ‘p53-dependent apoptosis-inducing protein and method of screening for apoptosis regulator’. US Patent 7,371,835, May 2008.
    30. 30)
      • 30. Chen, J., Yue, H., Ouyang, Q.: ‘Correlation between oncogenic mutations and parameter sensitivity of the apoptosis pathway model’, PLOS Comput. Biol., 2014, 10, (1), p. e1003451.
    31. 31)
      • 31. Castellino, R.C., Bortoli, M.D., Lu, X., et al: ‘Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D’, J. Neurooncol., 2008, 86, (3), pp. 245256.
    32. 32)
      • 32. Fuku, T., Semba, S., Yutori, H., et al: ‘Increased wild-type p53-induced phosphatase 1 (Wip1 or PPM1D) expression correlated with downregulation of checkpoint kinase 2 in human gastric carcinoma’, Pathol. Int., 2007, 57, (9), pp. 566571.
    33. 33)
      • 33. Lowe, J., Cha, H., Lee, M.-O., et al: ‘Regulation of the Wip1 phosphatase and its effects on the stress response’, Front. Biosci. J. Virtual Libr., 2012, 17, p. 1480.
    34. 34)
      • 34. Rauta, J., Alarmo, E.-L., Kauraniemi, P., et al: ‘The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours’, Breast Cancer Res. Treat., 2006, 95, (3), pp. 257263.
    35. 35)
      • 35. Saito-Ohara, F., Imoto, I., Inoue, J., et al: ‘PPM1D is a potential target for 17q gain in neuroblastoma’, Cancer Res., 2003, 63, (8), pp. 18761883.
    36. 36)
      • 36. Li, J., Yang, Y., Peng, Y., et al: ‘Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23’, Nat. Genet., 2002, 31, (2), p. 133.
    37. 37)
      • 37. Bulavin, D.V., Demidov, O.N., Saito, S., et al: ‘Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity’, Nat. Genet., 2002, 31, (2), pp. 210215.
    38. 38)
      • 38. Xu, Y., Baltimore, D.: ‘Dual roles of ATM in the cellular response to radiation and in cell growth control’, Genes Dev., 1996, 10, (19), pp. 24012410.
    39. 39)
      • 39. Green, D.R., Evan, G.I.: ‘A matter of life and death’, Cancer Cell, 2002, 1, (1), pp. 1930.
    40. 40)
      • 40. Lambros, M., Natrajan, R., Geyer, F., et al: ‘PPM1D gene amplification and overexpression in breast cancer: a qRT-PCR and chromogenic in situ hybridization study’, Mod. Pathol., 2010, 23, (10), pp. 13341345.
    41. 41)
      • 41. Richter, M., Dayaram, T., Gilmartin, A., et al: ‘WIP1 phosphatase as a potential therapeutic target in neuroblastoma’, PLoS One, 2015, 10, (2), p. e0115635.
    42. 42)
      • 42. Xia, Y., Ongusaha, P., Lee, S., et al: ‘Loss of Wip1 sensitizes cells to stress-and DNA damage-induced apoptosis’, J. Biol. Chem., 2009, 284, (26), pp. 1742817437.
    43. 43)
      • 43. Kong, W., Jiang, X., Mercer, W.: ‘Downregulation of Wip-1 phosphatase expression in MCF-7 breast cancer cells enhances doxorubicin-induced apoptosis through p53-mediated transcriptional activation of Bax’, Cancer Biol. Ther., 2009, 8, (6), pp. 555563.
    44. 44)
      • 44. Goloudina, A., Tanoue, K., Hammann, A., et al: ‘Wip1 promotes RUNX2-dependent apoptosis in p53-negative tumors and protects normal tissues during treatment with anticancer agents’, Proc. Natl. Acad. Sci., 2012, 109, (2), pp. E68E75.
    45. 45)
      • 45. Yi, W., Hu, X., Chen, Z., et al: ‘Phosphatase Wip1 controls antigen-independent B-cell development in a p53-dependent manner’, Blood, 2015, 126, (5), pp. 620628.
    46. 46)
      • 46. Wang, H., Liu, Z., Qiu, L., et al: ‘Knockdown of Wip1 enhances sensitivity to radiation in hela cells through activation of p38 MAPK’, Oncol. Res. Featuring Preclin. Clin. Cancer Ther., 2015, 22, (4), pp. 225233.
    47. 47)
      • 47. Belova, G.I., Demidov, O., Fornace, A.J., et al: ‘Chemical inhibition of Wip1 phosphatase contributes to suppression of tumorigenesis’, Cancer Biol. Ther., 2005, 4, (10), pp. 11541158.
    48. 48)
      • 48. Rayter, S., Elliott, R., Travers, J., et al: ‘A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D’, Oncogene, 2008, 27, (8), pp. 10361044.
    49. 49)
      • 49. Tan, D., Lambros, M., Rayter, S., et al: ‘PPM1D is a potential therapeutic target in ovarian clear cell carcinomas’, Clin. Cancer Res., 2009, 15, (7), pp. 22692280.
    50. 50)
      • 50. Yamaguchi, H., Durell, S., Feng, H., et al: ‘Development of a substrate-based cyclic phosphopeptide inhibitor of protein phosphatase 2Cδ, Wip1’, Biochemistry, 2006, 45, (44), pp. 1319313202.
    51. 51)
      • 51. Yoda, A., Toyoshima, K., Watanabe, Y., et al: ‘Arsenic trioxide augments Chk2/p53-mediated apoptosis by inhibiting oncogenic Wip1 phosphatase’, J. Biol. Chem., 2008, 283, (27), pp. 1896918979.
    52. 52)
      • 52. Delia, D., Fontanella, E., Ferrario, C., et al: ‘DNA damage-induced cell-cycle phase regulation of p53 and p21waf1 in normal and ATM-defective cells’, Oncogene, 2003, 22, (49), pp. 78667869.
    53. 53)
      • 53. Lavin, M., Kozlov, S.: ‘ATM activation and DNA damage response’, Cell Cycle, 2007, 6, (8), pp. 931942.
    54. 54)
      • 54. Darlington, Y., Nguyen, T., Moon, S., et al: ‘Absence of Wip1 partially rescues ATM deficiency phenotypes in mice’, Oncogene, 2012, 31, (9), pp. 11551165.
    55. 55)
      • 55. Reifenberger, G., Liu, L., Ichimura, K., et al: ‘Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations’, Cancer Res., 2003, 53, (12), pp. 27362739.
    56. 56)
      • 56. Kozłowska, E., Puszynski, K.: ‘Application of bifurcation theory and siRNA-based control signal to restore the proper response of cancer cells to DNA damage’, J. Theor. Biol., 2016, 408, pp. 213221.
    57. 57)
      • 57. El-Deiry, W.: ‘Regulation ofp53 downstream genes’, Semin. Cancer Biol., 1998, 8, (5), pp. 345357.
    58. 58)
      • 58. Braithwaite, A.W., Prives, C.L.: ‘p53: more research and more questions’, Cell Death Differ., 2006, 13, pp. 877880.
    59. 59)
      • 59. Bensussen, A., Díaz, J.: ‘Dynamical aspects of apoptosis’, in Nenoi, M. (Ed.): ‘Current topics in ionizing radiation research’ (InTech, Rijeka, Croatia, 2012), pp. 243268.
    60. 60)
      • 60. Sancar, A., Lindsey-Boltz, L.A., Kang, T.H., et al: ‘Circadian clock control of the cellular response to DNA damage’, FEBS Lett., 2010, 584, (12), pp. 26182625.
    61. 61)
      • 61. Kang, T., Sancar, A.: ‘Circadian regulation of DNA excision repair: implications for chrono-chemotherapy’, Cell Cycle, 2009, 8, (11), pp. 16651667.
    62. 62)
      • 62. Lu, X., Ma, O., Nguyen, T., et al: ‘The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop’, Cancer Cell, 2007, 12, (4), pp. 342354.
    63. 63)
      • 63. Hat, B., Kochańczyk, M., Bogdał, M., et al: ‘Feedbacks, bifurcations, and cell fate decision-making in the p53 system’, PLoS Comput. Biol., 2016, 12, (2), p. 1004787.
    64. 64)
      • 64. Leenders, G., Tuszynski, J.: ‘Stochastic and deterministic models of cellular p53 regulation’, Front. Oncol., 2013, 3, p. 3.
    65. 65)
      • 65. Hunziker, A., Jensen, M., Krishna, S.: ‘Stress-specific response of the p53-Mdm2 feedback loop’, BMC Syst. Biol., 2010, 4, p. 94.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0041
Loading

Supplementary material

Related content

content/journals/10.1049/iet-syb.2017.0041
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address