Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Describing function-based approximations of biomolecular systems

Mathematical methods provide useful framework for the analysis and design of complex systems. In newer contexts such as biology, however, there is a need to both adapt existing methods as well as to develop new ones. Using a combination of analytical and computational approaches, the authors adapt and develop the method of describing functions to represent the input–output responses of biomolecular signalling systems. They approximate representative systems exhibiting various saturating and hysteretic dynamics in a way that is better than the standard linearisation. Furthermore, they develop analytical upper bounds for the computational error estimates. Finally, they use these error estimates to augment the limit cycle analysis with a simple and quick way to bound the predicted oscillation amplitude. These results provide system approximations that can add more insight into the local behaviour of these systems than standard linearisation, compute responses to other periodic inputs and to analyse limit cycles.

References

    1. 1)
      • 15. Dey, A., Sen, S.: ‘Describing function-based approximations of biomolecular signalling systems’. Linz, Austria: 14th European Control Conf., 2015, pp. 22922297.
    2. 2)
      • 16. Detwiler, P.B., Ramanathan, S., Sengupta, A., et al: ‘Engineering aspects of enzymatic signal transduction: photoreceptors in the retina’, Biophys. J., 2000, 79, pp. 28012817.
    3. 3)
      • 20. Xiong, W., Ferrell, J.E.: ‘A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision’, Nature, 2003, 426, pp. 460465.
    4. 4)
      • 11. Gelb, A., Vander Velde, W.E.: ‘Multiple-input describing functions and nonlinear system design’ (McGraw-Hill Electronic Sciences Series McGraw-Hill, New York, 1968).
    5. 5)
      • 29. Elowitz, M.B., Leibler, S.: ‘A synthetic oscillatory network of transcriptional regulators’, Nature, 2000, 403, (6767), pp. 335338.
    6. 6)
      • 12. Slotine, J.J.E., Li, W.: ‘Applied nonlinear control’ (Prentice-Hall, Englewood Cliffs, NJ, 1991).
    7. 7)
      • 27. Fitzhugh, R.: ‘Impulses and physiological states in theoretical models of nerve membranes’, Biophys. J., 1961, 1, (6), pp. 445466.
    8. 8)
      • 24. Lind, M.: ‘Functions of bounded variation’, Mathematics C-level thesis. Karlstads University. Sweden, 2006.
    9. 9)
      • 6. Block, S.M., Segall, J.E., Berg, H.C.: ‘Impulse responses in bacterial chemotaxis’, Cell, 1982, 31, (1), pp. 215226.
    10. 10)
      • 10. Bennett, M.R., Pang, W.L., Ostroff, N.A., et al: ‘Metabolic gene regulation in a dynamically changing environment’, Nature, 2008, 454, (7208), pp. 11191122.
    11. 11)
      • 25. Bergen, A.R., Chua, L.O., Mees, A.I., et al: ‘Error bounds for general describing function problems’, IEEE Trans. Circuits Syst., 1982, 29, (6), pp. 345354.
    12. 12)
      • 21. Trotta, L., Sepulchre, R., Bullinger, E.: ‘Delayed decision-making in bistable models’. IEEE 49th Annual Conf. Decision and Control, 2010, pp. 816821.
    13. 13)
      • 19. Ferrell, J.E., Xiong, W.: ‘Bistability in cell signalling: how to make continuous processes discontinuous, and reversible processes irreversible’, Chaos, 2001, 11, (1), pp. 227236.
    14. 14)
      • 23. Giardina, C.R., Chirlian, P.M.: ‘Bounds on the truncation error of periodic signals’, IEEE Trans. Circuit Theory, 1972, 19, (2), pp. 206207.
    15. 15)
      • 18. Goldbeter, A., Koshland, J.D.E: ‘An amplified sensitivity arising from covalent modification in biological systems’, Proc. Natl. Acad. Sci. USA, 1981, 78, (11), pp. 68406844.
    16. 16)
      • 13. Wang, Y., Hori, Y., Hara, S., et al: ‘Collective oscillation period of intercoupled biological negative cyclic feedback oscillators’, IEEE Trans. Autom. Control, 2015, 60, (5), pp. 13921397.
    17. 17)
      • 2. Hartwell, L.H., Hopfield, J.J., Leibler, S., et al: ‘From molecular to modular cell biology’, Nature, 1999, 402, (6761 Suppl), pp. C47C52.
    18. 18)
      • 9. Muzzey, D., Oudenaarden, A.V.: ‘Quantitative time-lapse fluorescence microscopy in single cells’, Annu. Rev. Cell Dev. Biol., 2009, 25, pp. 301327.
    19. 19)
      • 7. Hersen, P., McClean, M.N., Mahadevan, L., et al: ‘Signal processing by the hog map kinase pathway’, Proc. Natl. Acad. Sci. USA, 2008, 105, (20), pp. 71657170.
    20. 20)
      • 8. Mettetal, J.T., Muzzey, D., Gómez-Uribe, C., et al: ‘The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae’, Science, 2008, 319, pp. 482484.
    21. 21)
      • 28. Nagumo, J., Arimoto, S., Yoshizawa, S.: ‘An active pulse transmission line simulating nerve axon’, Proc. IRE, 1962, 50, (10), pp. 20612070.
    22. 22)
      • 5. Sontag, E.D.: ‘Monotone and near-monotone biochemical networks’, Syst. Synth. Biol., 2007, 1, (2), pp. 5987.
    23. 23)
      • 4. Barkai, N., Leibler, S.: ‘Robustness in simple biochemical networks’, Nature, 1997, 387, (6636), pp. 913917.
    24. 24)
      • 3. Huang, C.Y., Ferrell, J.E.: ‘Ultrasensitivity in the mitogen-activated protein kinase cascade’, Proc. Natl. Acad. Sci. USA, 1996, 93, (19), pp. 1007810083.
    25. 25)
      • 17. Stock, A.M., Robinson, V.L., Goudreau, P.N.: ‘Two-component signal transduction’, Annu. Rev. Biochem., 2000, 69, pp. 183215.
    26. 26)
      • 14. Kinnane, O., Ringwood, J., Kelly, D., et al: ‘Describing function approximation for biomedical engineering applications’. Irish Signals and Systems Conf., 2004. pp. 107112.
    27. 27)
      • 1. Punrick, P.E.M., Weiss, R.: ‘The second wave of synthetic biology: from modules to systems’, Nat. Rev. Mol. Cell Biol., 2009, 10, (6), pp. 410422.
    28. 28)
      • 31. Thattai, M., Oudenaarden, A.V.: ‘Intrinsic noise in gene regulatory networks’, Proc. Natl. Acad. Sci. USA, 2001, 98, (15), pp. 86148619.
    29. 29)
      • 22. Oppenheim, A.V., Willsky, A.S., Young, I.T.: ‘Signals and systems’ (Prentice-Hall Signal Processing Series Prentice-Hall, Englewood Cliffs, New Jersey, 1983).
    30. 30)
      • 26. Van der Pol, B.: ‘On relaxation-oscillations’, Lond. Edinb. Dublin Phil. Mag. J. Sci., 1926, 2, (11), pp. 978992.
    31. 31)
      • 30. Hori, Y., Takada, M., Hara, S.: ‘Biochemical oscillations in delayed negative cyclic feedback: existence and profiles’, Automatica, 2013, 49, (9), pp. 25812590.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0026
Loading

Related content

content/journals/10.1049/iet-syb.2017.0026
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address