http://iet.metastore.ingenta.com
1887

access icon openaccess Comparison of clustering approaches with application to dual colour protein data

Loading full text...

Full text loading...

/deliver/fulltext/iet-syb/12/1/IET-SYB.2017.0019.html;jsessionid=74ijupd88q9h8.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-syb.2017.0019&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. PubMed Help [Internet]. Bethesda (MD): ‘National Center for Biotechnology Information (US); 2005-. PubMed Help’. Available at https://www.ncbi.nlm.nih.gov/books/NBK3827/, accessed May 2017.
    2. 2)
      • 2. Eisen, M.B., Spellman, P.T., Brown, P.O., et al: ‘Cluster analysis and display of genome-wide expression patterns’, PNAS, 1998, 95, (25), pp. 1486314868.
    3. 3)
      • 3. Sunaga, D.Y., Nievola, J.C., Ramos, M.P.: ‘Statistical and biological validation methods in cluster analysis of gene expression’. Sixth Int. Conf. Machine Learning and Applications (ICMLA), 2007, pp. 494499.
    4. 4)
      • 4. Arnau, V., Mars, S., Marín, I.: ‘Iterative cluster analysis of protein interaction data’, Bioinformatics, 2005, 21, (2), pp. 364378.
    5. 5)
      • 5. Manley, S., Gillette, J.M., Patterson, G.H., et al: ‘High-density mapping of single-molecule trajectories with photoactivated localization microscopy’, Nat. Methods, 2008, 5, (2), pp. 155157.
    6. 6)
      • 6. Greb, C., Hosy, E.: ‘Universal PAINT–dynamic super-resolution microscopy’, 2015.
    7. 7)
      • 7. Burnette, D.T., Sengupta, P., Dai, Y., et al: ‘Bleaching/blinking assisted localization microscopy for super-resolution imaging using standard fluorescent molecules’, Proc. Natl. Acad. Sci.USA, 2011, 108, (52), pp. 2108121086, doi:10.1073/pnas.1117430109.
    8. 8)
      • 8. Subach, F.V., Patterson, G.H., Manley, S., et al: ‘Photoactivatable mCherry for high-resolution two-color fluorescence microscopy’, Nat. Methods, 2009, 6, (2), pp. 153159.
    9. 9)
      • 9. Betzig, E., Patterson, G.H., Sougrat, R., et al: ‘Imaging intracellular fluorescent proteins at nanometer resolution’, Am. Assoc. Adv. Sci., 2006, 313, (5793), pp. 16421645, doi:10.1126/science.1127344.
    10. 10)
      • 10. Huang, B., Babcock, H., Zhuang, X.: ‘Breaking the diffraction barrier: super-resolution imaging of cells’, Cell, 2010, 143, (7), pp. 10471058.
    11. 11)
      • 11. Ripley, B.D.: ‘Modelling spatial patterns’, J. R. Stat. Soc. Ser. B, 1977, 39, (2), pp. 173212.
    12. 12)
      • 12. Rubin-Delanchy, P., Burn, G.L., Griffie, J., et al: ‘Bayesian cluster identification in single-molecule localization microscopy data’, Nat. Methods, 2015, 12, (11), pp. 10721076.
    13. 13)
      • 13. Sengupta, P., Jovanovic-Talisman, T., Skoko, D., et al: ‘Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis’, Nat. Methods, 2011, 8, (11), pp. 969975.
    14. 14)
      • 14. Levet, F., Hosy, E., Kechkar, A., et al: ‘SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data’, Nat. Methods, 2015, 12, (11), pp. 10651071.
    15. 15)
      • 15. Ester, M., Kriegel, H.-P., Sander, J., et al: ‘A density-based algorithm for discovering clusters in large spatial databases with noise’. Proc. Second Int. Conf. Knowledge Discovery and Data Mining (KDD-96), 1996, pp. 231266, ed. U. M. F. Evangelos Simoudis, Jiawei Han AAAI Press.
    16. 16)
      • 16. Hartigan, J.A.: ‘Clustering algorithms’ (Wiley, New York, 1975).
    17. 17)
      • 17. Jain, A.K., Murty, M.N., Flynn, P.J.: ‘Data clustering: a review’, ACM Comput. Surv., 1999, 31, (3), pp. 264323.
    18. 18)
      • 18. Kaufman, L., Rousseeuw, P.J.: ‘Finding groups in data: an introduction to cluster analysis’ (Wiley, Wiley series in probability and mathematical statistics, New Jersey, 2005).
    19. 19)
      • 19. Scott, D.W., Sain, S.R.: ‘Multidimensional density estimation’. inRao, C.R., Wegman, E.J., Solka, J.L. (EDs.): ‘Handbook of statistics’ (Elsevier, 2005), vol. 24, pp. 229261.
    20. 20)
      • 20. Dunham, M.H., Meng, Y., Huang, J.: ‘Extensible Markov model’. Proc. IEEE ICDM Conf., IEEE, 2004, pp. 371374.
    21. 21)
      • 21. Schäfer, M., Radon, Y., Klein, T., et al: ‘A Bayesian mixture model to quantify parameters of spatial clustering’, Comput. Stat. Data Anal., 2015, 92, pp. 163176.
    22. 22)
      • 22. R Core Team: ‘R: a language and environment for statistical computing’ (R Foundation for Statistical Computing, Vienna, Austria, 2013). Available at http://www.R-project.org/.
    23. 23)
      • 23. Baddeley, A., Turner, R.: ‘Spatstat: an R package for analyzing spatial point patterns’, J. Stat. Softw., 2005, 12, (6), pp. 142.
    24. 24)
      • 24. Hahsler, M., Dunham, M.H.: ‘rEMM: extensible Markov model (EMM) for data stream clustering in R’, R package version 1.0-8, 2014. Available at http://CRAN.R-project.org/package=rEMM.
    25. 25)
      • 25. Hahsler, M., Dunham, M.H.: ‘rEMM: extensible Markov model for data stream clustering in R’, J. Stat. Softw., 2010, 35, (5), pp. 131.
    26. 26)
      • 26. Ch, Hennig.: ‘Fpc: flexible procedures for clustering, R package version 2.1-7’, 2014. Available at http://CRAN.R-project.org/package=fpc.
    27. 27)
      • 27. Maechler, M., Rousseeuw, P., Struyf, A., et al: ‘Cluster: cluster analysis basics and extensions, R package version 1.14.4 – for new features, see the ‘Changelog’ file (in the package source), 2013.
    28. 28)
      • 28. Original, S., Scott, D.W.: ‘Report by Gebhardt, A. adopted to recent S-PLUS by Kaluzny, S.: ash: David Scott's ASH routines’. R Package, version 1.0-14, 2013. Available at http://CRAN.R-project.org/package=ash.
    29. 29)
      • 29. MATLAB: ‘Version 7.10.0 (R2010a)’ (The MathWorks Inc., Natick, MA, 2010).
    30. 30)
      • 30. Johnson, S.C.: ‘Hierarchical clustering schemes’, Psychometrika, 1967, 32, (3), pp. 241254.
    31. 31)
      • 31. Ankerst, M., Breunig, M.M., Kriegel, H.-P., et al: ‘OPTICS: ordering points to identify the clustering structure’. ACM SIGMOD Int. Conf. Management of Data, 1999, pp. 4960, ACM Press.
    32. 32)
      • 32. Argiento, R., Cremaschi, A., Guglielmi, A.: ‘A ‘density-based’ algorithm for cluster analysis using species sampling Gaussian mixture models’, J. Comput. Graph. Stat., 2014, 23, (4), pp. 11261142.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0019
Loading

Related content

content/journals/10.1049/iet-syb.2017.0019
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address