Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Protein sequestration versus Hill-type repression in circadian clock models

Circadian (∼24 h) clocks are self-sustained endogenous oscillators with which organisms keep track of daily and seasonal time. Circadian clocks frequently rely on interlocked transcriptional-translational feedback loops to generate rhythms that are robust against intrinsic and extrinsic perturbations. To investigate the dynamics and mechanisms of the intracellular feedback loops in circadian clocks, a number of mathematical models have been developed. The majority of the models use Hill functions to describe transcriptional repression in a way that is similar to the Goodwin model. Recently, a new class of models with protein sequestration-based repression has been introduced. Here, the author discusses how this new class of models differs dramatically from those based on Hill-type repression in several fundamental aspects: conditions for rhythm generation, robust network designs and the periods of coupled oscillators. Consistently, these fundamental properties of circadian clocks also differ among Neurospora, Drosophila, and mammals depending on their key transcriptional repression mechanisms (Hill-type repression or protein sequestration). Based on both theoretical and experimental studies, this review highlights the importance of careful modelling of transcriptional repression mechanisms in molecular circadian clocks.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 91. Tyson, J.J., Othmer, H.G.: ‘The dynamics of feedback control circuits in biochemical pathways’, Prog. Theor. Biol, 1978, 5, (1), 62.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • 97. Fall, C.P., Marland, E.S., Wagner, J.M., et al: ‘Computational cell biology’ (Springer, 2002).
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
      • 59. Kim, J.K., Forger, D.B.: ‘A mechanism for robust circadian timekeeping via stoichiometric balance’, Mol. Syst. Biol., 2012, 8, 630.
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
    66. 66)
    67. 67)
    68. 68)
    69. 69)
    70. 70)
      • 1. Dunlap, J.C., Loros, J.J., DeCoursey, P.J.: ‘Chronobiology: biological timekeeping’ (Sinauer Associates, 2004).
    71. 71)
    72. 72)
    73. 73)
    74. 74)
    75. 75)
    76. 76)
      • 13. Gonze, D.: ‘Modeling circadian clocks: roles, advantages, and limitations’, Cent. Eur. J. Biol., 2011, 6, (5), pp. 712729.
    77. 77)
    78. 78)
    79. 79)
    80. 80)
    81. 81)
    82. 82)
    83. 83)
    84. 84)
    85. 85)
    86. 86)
    87. 87)
    88. 88)
    89. 89)
    90. 90)
    91. 91)
    92. 92)
    93. 93)
    94. 94)
    95. 95)
    96. 96)
    97. 97)
      • 90. Thron, C.D.: ‘The secant condition for instability in biochemical feedback control—Ii. Models with upper Hessenberg Jacobian matrices’, Bull. Math. Biol., 1991, 53, (3), pp. 403424.
    98. 98)
    99. 99)
    100. 100)
    101. 101)
    102. 102)
    103. 103)
    104. 104)
    105. 105)
    106. 106)
    107. 107)
    108. 108)
    109. 109)
    110. 110)
    111. 111)
    112. 112)
    113. 113)
    114. 114)
    115. 115)
    116. 116)
    117. 117)
    118. 118)
    119. 119)
    120. 120)
    121. 121)
    122. 122)
    123. 123)
    124. 124)
    125. 125)
    126. 126)
    127. 127)
    128. 128)
    129. 129)
    130. 130)
    131. 131)
    132. 132)
    133. 133)
    134. 134)
    135. 135)
    136. 136)
    137. 137)
    138. 138)
    139. 139)
    140. 140)
    141. 141)
    142. 142)
    143. 143)
    144. 144)
    145. 145)
      • 55. Barkai, N., Leibler, S.: ‘Biological rhythms – circadian clocks limited by noise’, Nature, 2000, 403, (6767), pp. 267268.
    146. 146)
    147. 147)
    148. 148)
    149. 149)
    150. 150)
    151. 151)
    152. 152)
    153. 153)
    154. 154)
    155. 155)
    156. 156)
    157. 157)
    158. 158)
    159. 159)
    160. 160)
      • 135. Aton, S.J., Colwell, C.S., Harmar, A.J., et al: ‘Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons’, Nature Neurosci., 2005, 8, (4), pp. 476483.
    161. 161)
    162. 162)
    163. 163)
    164. 164)
    165. 165)
    166. 166)
    167. 167)
    168. 168)
    169. 169)
    170. 170)
    171. 171)
    172. 172)
    173. 173)
      • 152. Gardner, G.F., Feldman, J.F.: ‘The Frq locus in neurospora crassa: a key element in circadian clock organization’, Genetics, 1980, 96, (4), pp. 877886.
    174. 174)
      • 16. Glass, L., Winfree, A.T.: ‘Discontinuities in phase-resetting experiments’, Am. J. Physiol., 1984, 246, (2 Pt 2), pp. R251R258.
    175. 175)
    176. 176)
    177. 177)
    178. 178)
      • 11. Gonze, D.: ‘Modeling circadian clocks: from equations to oscillations’, Cent. Eur. J. Biol., 2011, 6, (5), pp. 699711.
    179. 179)
      • 7. Winfree, A.T.: ‘The geometry of biological time’ (Springer Verlag, 1980).
    180. 180)
    181. 181)
    182. 182)
    183. 183)
    184. 184)
    185. 185)
    186. 186)
    187. 187)
    188. 188)
    189. 189)
    190. 190)
    191. 191)
    192. 192)
    193. 193)
    194. 194)
    195. 195)
    196. 196)
    197. 197)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2015.0090
Loading

Related content

content/journals/10.1049/iet-syb.2015.0090
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address