http://iet.metastore.ingenta.com
1887

Modular bond-graph modelling and analysis of biomolecular systems

Modular bond-graph modelling and analysis of biomolecular systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Bond graphs can be used to build thermodynamically-compliant hierarchical models of biomolecular systems. As bond graphs have been widely used to model, analyse and synthesise engineering systems, this study suggests that they can play the same rôle in the modelling, analysis and synthesis of biomolecular systems. The particular structure of bond graphs arising from biomolecular systems is established and used to elucidate the relation between thermodynamically closed and open systems. Block diagram representations of the dynamics implied by these bond graphs are used to reveal implicit feedback structures and are linearised to allow the application of control-theoretical methods. Two concepts of modularity are examined: computational modularity where physical correctness is retained and behavioural modularity where module behaviour (such as ultrasensitivity) is retained. As well as providing computational modularity, bond graphs provide a natural formulation of behavioural modularity and reveal the sources of retroactivity. A bond graph approach to reducing retroactivity, and thus inter-module interaction, is shown to require a power supply such as that provided by the ATP ⇌ ADP + Pi reaction. The mitogen-activated protein kinase cascade (Raf–MEK–ERK pathway) is used as an illustrative example.

References

    1. 1)
      • 1. Wellstead, P., Bullinger, E., Kalamatianos, D., et al: ‘The role of control and system theory in systems biology’, Annu. Rev. Control, 2008, 32, (1), pp. 3347, ISSN 1367-5788. doi: 10.1016/j.arcontrol.2008.02.001.
    2. 2)
      • 2. Paynter, H.M.: ‘Analysis and design of engineering systems’ (MIT Press, Cambridge, Mass, 1961).
    3. 3)
      • 3. Wellstead, P.E.: ‘Introduction to physical system modelling’ (Academic Press, 1979).
    4. 4)
      • 4. Gawthrop, P.J., Smith, L.P.S.: ‘Metamodelling: bond graphs and dynamic systems’ (Prentice-Hall, Hemel Hempstead, Herts, England, 1996), ISBN 0-13-489824-9.
    5. 5)
      • 5. Mukherjee, A., Karmaker, R., Samantaray, A.K.: ‘Bond graph in modeling, simulation and fault indentification’ (I.K. International, New Delhi, 2006).
    6. 6)
      • 6. Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: ‘System dynamics: modeling, simulation, and control of mechatronic systems’ (John Wiley & Sons, 2012, 5th edn.), ISBN 978-0470889084.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 10. Cellier, F.E.: ‘Continuous system modelling’ (Springer-Verlag, 1991).
    11. 11)
      • 11. Thoma, J.U., Mocellin, G.: ‘Simulation with entropy thermodynamics: understanding matter and systems with bondgraphs’ (Springer, 2006).
    12. 12)
      • 12. Greifeneder, J., Cellier, F.E.: ‘Modeling chemical reactions using bond graphs’. Proc. ICBGM12, 10th SCS Intl. Conf. on Bond Graph Modeling and Simulation, Genoa, Italy, 2012, pp. 110121.
    13. 13)
    14. 14)
      • 14. Gawthrop, P.J., Cursons, J., Crampin, E.J.: ‘Hierarchical bond graph modelling of biochemical networks’, Proc. R. Soc. A, Math. Phys. Eng. Sci., 2015, 471, (2184), pp. 123, doi: 10.1098/rspa.2015.0642. Available at arXiv:1503.01814.
    15. 15)
    16. 16)
    17. 17)
      • 17. Vecchio, D.D., Ninfa, A.J., Sontag, E.D.: ‘Modular cell biology: retroactivity and insulation’, Mol. Syst. Biol., 2008, 4, pp. 116, doi: 10.1038/msb4100204.
    18. 18)
    19. 19)
    20. 20)
      • 20. Vecchio, D.D., Murray, R.M.: ‘Biomolecular feedback systems’ (Princeton University Press, 2014)..
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 25. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: ‘Control system design’ (Prentice-Hall, Englewood Cliffs, New Jersey, 2001).
    26. 26)
    27. 27)
    28. 28)
      • 28. Borutzky, W.: ‘Incremental bond graphs’, in Borutzky, W. (Ed.): ‘Bond graph modelling of engineering systems’ (Springer New York, 2011), pp. 135176. doi: 10.1007/978-1-4419-9368-7_4.
    29. 29)
      • 29. Maxwell, J.C.: ‘Remarks on the mathematical classification of physical quantities’. Proc. London Mathematical Society, 1871, pp. 224233.
    30. 30)
      • 30. Atkins, P., de Paula, J.: ‘Physical chemistry for the life sciences’ (Oxford University Press, 2011, 2nd edn.).
    31. 31)
    32. 32)
    33. 33)
      • 33. Palsson, B.: ‘Systems biology: properties of reconstructed networks’ (Cambridge University Press, 2006)..
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 37. Sauro, H.M.: ‘Network dynamics’, in Ireton, R., Montgomery, K., Bumgarner, R., et al (Eds.): ‘Computational Systems Biology, volume 541 of Methods in Molecular Biology’ (Humana Press, New York, 2009), pp. 269309. doi: 10.1007/978-1-59745-243-4-13.
    38. 38)
      • 38. Ingalls, B.P.: ‘Mathematical modelling in systems biology’ (MIT Press, 2013).
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
      • 44. Szallasi, Z., Periwal, V., Stelling, J.: ‘On modules and modularity’, in Szallasi, Z., Stelling, J., Periwal, V. (Eds.): ‘System modeling in cellular biology: from concepts to nuts and bolts’ (MIT press, 2010), pp. 1940.
    45. 45)
      • 45. Kaltenbach, H.-M., Stelling, J.: ‘Modular analysis of biological networks’, in Goryanin, I.I., Goryachev, A.B. (Eds.): ‘Advances in systems biology, volume 736 of Advances in Experimental Medicine and Biology’ (Springer New York, 2012), pp. 317. doi: 10.1007/978-1-4419-7210-1_1.
    46. 46)
    47. 47)
    48. 48)
    49. 49)
      • 49. Sontag, E.D.: ‘Modularity, retroactivity, and structural identification’, in Koeppl, H., Setti, G., di Bernardo, M., et al (Eds.): ‘Design and analysis of biomolecular circuits’ (Springer New York, 2011), pp. 183200. doi: 10.1007/978-1-4419-6766-4_9.
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
      • 55. Barton, J., Sontag, E.D.: ‘The energy costs of biological insulators’, arXiv preprint arXiv:1210.3809, 2012.
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
      • 60. Sauro, H.M., Ingalls, B.: ‘MAPK cascades as feedback amplifiers’, arXiv preprint arXiv:0710.5195, 2007.
    61. 61)
      • 61. Beard, D.A., Qian, H.: ‘Chemical biophysics: quantitative analysis of cellular systems’ (Cambridge University Press, 2010).
    62. 62)
    63. 63)
      • 63. Savageau, M.A.: ‘Biochemical systems analysis. A study of function and design in molecular biology’ (Addison-Wesley, Reading, Mass, 2009, 40th anniversary issue edition).
    64. 64)
      • 64. Fell, D.: ‘Understanding the control of metabolism, volume 2 of Frontiers in Metabolism’ (Portland press, London, 1997)..
    65. 65)
      • 65. Cornish-Bowden, A.: ‘Fundamentals of enzyme kinetics’ (Wiley-Blackwell, London, 2013, 4th edn.).
    66. 66)
      • 66. Keener, J.P., Sneyd, J.: ‘Mathematical physiology: I: cellular physiology’ (Springer, 2009, 2nd edn.), vol. 1. 21.
    67. 67)
      • 67. Voit, E.O.: ‘A first course in systems biology’ (Garland Science, New York and London, 2013).
    68. 68)
    69. 69)
    70. 70)
    71. 71)
    72. 72)
    73. 73)
    74. 74)
    75. 75)
    76. 76)
    77. 77)
    78. 78)
      • 78. Wellstead, P.: ‘A New Look at Disease: Parkinson's through the eyes of an engineer’ (Control Systems Principles, Stockport, UK, 2012).
    79. 79)
    80. 80)
    81. 81)
    82. 82)
    83. 83)
    84. 84)
    85. 85)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2015.0083
Loading

Related content

content/journals/10.1049/iet-syb.2015.0083
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address