http://iet.metastore.ingenta.com
1887

Transcriptome marker diagnostics using big data

Transcriptome marker diagnostics using big data

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The big omics data are challenging translational bioinformatics in an unprecedented way for its complexities and volumes. How to employ big omics data to achieve a rivalling-clinical, reproducible disease diagnosis from a systems approach is an urgent problem to be solved in translational bioinformatics and machine learning. In this study, the authors propose a novel transcriptome marker diagnosis to tackle this problem using big RNA-seq data by viewing whole transcriptome as a profile marker systematically. The systems diagnosis not only avoids the reproducibility issue of the existing gene-/network-marker-based diagnostic methods, but also achieves rivalling-clinical diagnostic results by extracting true signals from big RNA-seq data. Their method demonstrates a better fit for personalised diagnostics by attaining exceptional diagnostic performance via using systems information than its competitive methods and prepares itself as a good candidate for clinical usage. To the best of their knowledge, it is the first study on this topic and will inspire the more investigations in big omics data diagnostics.

References

    1. 1)
      • 1. TCGA portal. Available at https://www.tcga-data.nci.nih.gov/tcga/, accessed October 2015.
    2. 2)
    3. 3)
      • 3. Shah, N.: ‘Translational bioinformatics embraces big data’, Yearbook Med. Inform., 2012, 7, (1), pp. 130134.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 8. Dillies, M., Rau, A., Aubert, J., et al: ‘A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis’, Brief. Bioinformatics, 2013, 14, (6), pp. 671–683.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 15. Jolliffe, I.: ‘Principal component analysis’ (Springer, New York, 2002).
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 19. Mallat, S.: ‘A wavelet tour of signal processing’ (Academic Press, CA, USA, 1999).
    20. 20)
      • 20. Kapur, J.N., Kesevan, H.K.: ‘Entropy optimization principles with applications’ (Academic Press, Toronto, 1992).
    21. 21)
      • 21. Shawe-Taylor, J., Cristianini, N.: ‘Support vector machines and other kernel-based learning methods’ (Cambridge University Press, 2000).
    22. 22)
    23. 23)
      • 23. Han, H., Jiang, X.: ‘Overcome support vector machine diagnosis overfitting’, Cancer Inform., 2014, 13, (S1), pp. 11451158.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 27. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: ‘RUSBoost: improving classification performance when training data is skewed’. 19th Int. Conf. on Pattern Recognition, 2008, pp. 14.
    28. 28)
    29. 29)
    30. 30)
      • 30. He, H.: ‘Learning from imbalanced data’, IEEE Trans. Knowl. Data Eng., 2011, 21, (9), pp. 12631284.
    31. 31)
      • 31. Fox, R., Dimmic, M.: ‘A two-sample Bayesian t-test for microarray data’, BMC Bioinformatics, 2006, 7, (126), http://www.biomedcentral.com/1471-2105/7/126.
    32. 32)
      • 32. Wang, D., Han, Z.: ‘Sublinear algorithms for big data applications’ (Springer, Switzerland, 2015).
    33. 33)
      • 33. Rubinstein, R.Y., Kroese, D.P.: ‘Simulation and the Monte Carlo method’ (John Wiley & Sons, New York, 2007, 2nd edn.).
    34. 34)
      • 34. Fakoor, R., Ladhak, F., Nazi, A., et al: ‘Using deep learning to enhance cancer diagnosis and classification’. Proc. of the ICML Workshop on the Role of Machine Learning in Transforming Healthcare, 2013.
    35. 35)
    36. 36)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2015.0026
Loading

Related content

content/journals/10.1049/iet-syb.2015.0026
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address