http://iet.metastore.ingenta.com
1887

Ant colony optimisation of decision tree and contingency table models for the discovery of gene–gene interactions

Ant colony optimisation of decision tree and contingency table models for the discovery of gene–gene interactions

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, ant colony optimisation (ACO) algorithm is used to derive near-optimal interactions between a number of single nucleotide polymorphisms (SNPs). This approach is used to discover small numbers of SNPs that are combined into a decision tree or contingency table model. The ACO algorithm is shown to be very robust as it is proven to be able to find results that are discriminatory from a statistical perspective with logical interactions, decision tree and contingency table models for various numbers of SNPs considered in the interaction. A large number of the SNPs discovered here have been already identified in large genome-wide association studies to be related to type II diabetes in the literature, lending additional confidence to the results.

References

    1. 1)
      • 1. Klein, R., Zeiss, C., Chew, E., et al: ‘Complement factor h polymorphism in age-related macular degeneration’, Sci. 15 April 2005, 2005, 308, pp. 385389.
    2. 2)
    3. 3)
    4. 4)
      • 4. Oki, N.: ‘On considering epistasis in genome wide association studies’ (North Carolina State University, North Carolina, USA2012).
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 15. Hosmer, D., Lemeshow, S.: ‘Applied logistic regression’ (John Wiley & Sons, Inc., New York, 2000).
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 21. Mooney, M., Wilmot, B., Bipolar Genome StudyMcWeeney, T.S., et al: ‘The GA and the GWAS: using genetic algorithms to search for multi-locus associations’. IEEE/ACM Transactions on Computational Biology and Bioinformatics/IEEE, 2011, doi: 10.1109/TCBB.2011.145. PMC. Web. 16 Apr. 2015.
    22. 22)
      • 22. Moore, J.H., White, W.C.: ‘Exploiting knowledge in genetic programming for genome-wide genetic analysis’. Parallel Problem Solving from Nature - PPSN IX, 2010 (LNCS, 4193), pp. 969977.
    23. 23)
      • 23. Greene, C., White, B., Moore, J.: ‘Ant colony optimization for genome-wide genetic analysis’. Ant Colony Optimization and Swarm Intelligence, Berlin/Heidelberg, 2008 (LNCS, 5217), pp. 3747.
    24. 24)
      • 24. Shang, J., Zhang, J., Lei, X., Zhang, Y., Chen, B.: ‘Incorporating heuristic information into ant colony optimization for epistasis detection’, 2012, 34, (3), pp. 321327.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 28. Sapin, E., Keedwell, E., Frayling, T.: ‘Subset-based ant colony optimisation for the discovery of gene–gene interactions in genome wide association studies’. Proc. 15th Annual Conf. on Genetic and Evolutionary Computation, 2013, pp. 295302.
    29. 29)
      • 29. Sapin, E., Keedwell, E., Frayling, T.: ‘Ant colony optimisation for exploring logical gene–gene associations in genome wide association studies’. IWBBIO'13, 2013, pp. 449456.
    30. 30)
      • 30. Sapin, E., Keedweel, E., Frayling, T.: ‘Subset-based ant colony optimisation of decision trees for the detection of gene-gene interactions’ . 2014 IEEE International Conference on Bioinformatics and Biomeicine (BIBM), Nov. 2014, pp 5761.
    31. 31)
    32. 32)
      • 32. Sharma, S., Ghosh, S., Anantharaman, N., Jayaraman, V.: ‘Simultaneous informative gene extraction and cancer classification using aco-antminer and aco-random forests’. Proc. Int. Conf. on Information Systems Design and Intelligent Applications 2012 (INDIA 2012) held in Visakhapatnam, India, January 2012. Advances in Intelligent and Soft Computing Volume, 2012, vol. 132, pp. 755761.
    33. 33)
      • 33. Diwakar, P., Rahul, R., Prashant, S., Bhaskar, K., Jayaraman, V.K.: ‘Random forests’, Comb. Chem. High Throughput Screen., 12, p. 507.
    34. 34)
      • 34. Boryczka, U., Kozak, J.: ‘New insights of cooperation among ants in ant colony decision trees’. 2011 Third World Congress on IEEE Nature and Biologically Inspired Computing (NaBIC), 2011, pp. 255260.
    35. 35)
      • 35. Boryczka, U., Kozak, J.: ‘Ant colony decision trees – a new method for constructing decision trees based on ant colony optimization’. Computational Collective Intelligence. Technologies and Applications, 2010 (LNCS, 6421), pp. 373382.
    36. 36)
    37. 37)
    38. 38)
      • 38. Dorigo, M., Maniezzo, V., Colorni, A.: ‘Positive feedback as a search strategy’. Technical Report, no. 91–016, Politecnico di Milano, Italy, 1991.
    39. 39)
      • 39. Sapin, E., Keedwell, E.: ‘T-ACO – tournament ant colony optimisation for high-dimensional problems’. Proc. of the Int. Joint Conf. on Computational Intelligence, 2012, pp. 8186.
    40. 40)
      • 40. Sapin, E., Keedweel, E.: ‘A subset-based ant colony optimisation with tournament path selection for high-dimensional problem’. Transactions on Computional Collective Intelligence (LNCS, 8790), 17, pp 232247.
    41. 41)
      • 41. Leguizamon, G., Michalewicz, Z.: ‘A new version of ant system for subset problems’. Proc. of the 1999 Congress on Evolutionary Computation (CEC 99), 1999, vol. 2, pp. 14581464.
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2015.0017
Loading

Related content

content/journals/10.1049/iet-syb.2015.0017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address