Accounting for randomness in measurement and sampling in studying cancer cell population dynamics
- Author(s): Siavash Ghavami 1, 2 ; Olaf Wolkenhauer 2, 3 ; Farshad Lahouti 1 ; Mukhtar Ullah 2 ; Michael Linnebacher 4
-
-
View affiliations
-
Affiliations:
1:
Center for Wireless Multimedia Communications, Center of Excellence in Applied Electromagnetic Systems, School of Electrical & Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran;
2: Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany;
3: Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa;
4: Department of General, Thoracic, Vascular and Transplantation Surgery, University of Rostock, Rostock, Germany
-
Affiliations:
1:
Center for Wireless Multimedia Communications, Center of Excellence in Applied Electromagnetic Systems, School of Electrical & Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran;
- Source:
Volume 8, Issue 5,
October 2014,
p.
230 – 241
DOI: 10.1049/iet-syb.2013.0031 , Print ISSN 1751-8849, Online ISSN 1751-8857
- « Previous Article
- Table of contents
- Next Article »
Knowing the expected temporal evolution of the proportion of different cell types in sample tissues gives an indication about the progression of the disease and its possible response to drugs. Such systems have been modelled using Markov processes. We here consider an experimentally realistic scenario in which transition probabilities are estimated from noisy cell population size measurements. Using aggregated data of FACS measurements, we develop MMSE and ML estimators and formulate two problems to find the minimum number of required samples and measurements to guarantee the accuracy of predicted population sizes. Our numerical results show that the convergence mechanism of transition probabilities and steady states differ widely from the real values if one uses the standard deterministic approach for noisy measurements. This provides support for our argument that for the analysis of FACS data one should consider the observed state as a random variable. The second problem we address is about the consequences of estimating the probability of a cell being in a particular state from measurements of small population of cells. We show how the uncertainty arising from small sample sizes can be captured by a distribution for the state probability.
Inspec keywords: hidden Markov models; cellular biophysics; random processes; fluorescence; cancer; Gaussian distribution; maximum likelihood estimation; mean square error methods; biomedical measurement; convergence of numerical methods; tumours
Other keywords: noise distributions; drugs; random variable; state transition probability; Gaussian distributions; transition probability matrix; disease; convergence mechanism; maximum likelihood estimator; standard deterministic approach; Markov process; fluorescence-activated cell sorting measurement; cancer cell population dynamics; stochastic phenomena; minimum mean square error estimator; noisy measurement; normal tissue cells; MMSE; malignant tumours; tissue samples; hidden Markov model; cell population size measurement
Subjects: Optical and laser radiation (medical uses); Interpolation and function approximation (numerical analysis); Optical and laser radiation (biomedical imaging/measurement); Cellular biophysics; Probability theory, stochastic processes, and statistics; Biomedical engineering; Markov processes; Numerical approximation and analysis
References
-
-
1)
-
16. Grima, R.: ‘Intrinsic biochemical noise in crowded intracellular conditions’, J. Chem. Phys., 2010, 132, (18), pp. 1–9.
-
-
2)
-
21. Kalbfleisch, J.D., Lawless, J.F.: ‘Least-squares estimation of transition probabilities from aggregate data’, Can. J. Stat., 1984, 12, (3), pp. 169–182 (doi: 10.2307/3314745).
-
-
3)
-
25. Blanter, Y.M., Buttiker, M.: ‘Shot noise in mesoscopic conductors’, Phys. Rep., 2000, 336, (1–2), pp. 1–166 (doi: 10.1016/S0370-1573(99)00123-4).
-
-
4)
-
18. Herzenberg, L.A., Tung, J., Moore, W.A., Herzenberg, L.A., Parks, D.R.: ‘Interpreting flow cytometry data: a guide for the perplexed’, Nat. Immunol., 2006, 7, (7), pp. 681–685 (doi: 10.1038/ni0706-681).
-
-
5)
-
12. Ullah, M., Wolkenhauer, O.: ‘Stochastic approaches in systems biology’, Wires Syst. Biol. Med., 2010, 2, (4), pp. 385–397 (doi: 10.1002/wsbm.78).
-
-
6)
- L.E. Baum , T. Petrie , G. Soules , N. Weiss . A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. , 1 , 164 - 171
-
7)
-
23. Maletzki, C., Stier, S., Gruenert, U., et al: ‘Establishment, characterization and chemosensitivity of three mismatch repair deficient cell lines from sporadic and inherited colorectal carcinomas’, PLoS ONE, 2012, 7, (12), pp. 1–12 (doi: 10.1371/journal.pone.0052485).
-
-
8)
-
20. Kalbfleisch, J.D., Lawless, J.F., Vollmer, W.M.: ‘Estimation in Markov-models from aggregate data’, Biometrics, 1983, 39, (4), pp. 907–919 (doi: 10.2307/2531326).
-
-
9)
-
33. Tkacik, G.: ‘From statistical mechanics to information theory: understanding biophysical information-processing systems’, 2010, pp. 1–52, arXiv:1006.4291v1[q-bio.MN].
-
-
10)
-
17. Greese, B., Wester, K., Bensch, R., et al: ‘Influence of cell-to-cell variability on spatial pattern formation’, IET Syst. Biol., 2012, 6, (4), pp. 143–153 (doi: 10.1049/iet-syb.2011.0050).
-
-
11)
-
5. La Porta, C.A.M., Zapperi, S., Sethna, J.P.: ‘Senescent cells in growing tumors: population dynamics and cancer stem cells’, PLoS Comput. Biol., 2012, 8, (1), pp. 1–13 (doi: 10.1371/journal.pcbi.1002316).
-
-
12)
-
10. Gupta, P.B., Fillmore, C.M., Jiang, G.Z., et al: ‘Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells (vol 146, pg 633, 2011)’, Cell, 2011, 147, (5), pp. 633–644 (doi: 10.1016/j.cell.2011.07.026).
-
-
13)
-
24. Tour, O., Adams, S.R., Kerr, R.A., et al: ‘Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator’, Nat. Chem. Biol., 2007, 3, (7), pp. 423–431 (doi: 10.1038/nchembio.2007.4).
-
-
14)
-
4. Mak, A.B., Blakely, K.M., Williams, R.A., et al: ‘CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope’, J. Biol. Chem., 2011, 286, (47), pp. 41046–41056 (doi: 10.1074/jbc.M111.261545).
-
-
15)
-
8. Vermeulen, L., Melo, F.D.E., Richel, D.J., Medema, J.P.: ‘The developing cancer stem-cell model: clinical challenges and opportunities’, Lancet Oncol., 2012, 13, (2), pp. E83–E89 (doi: 10.1016/S1470-2045(11)70257-1).
-
-
16)
-
14. Thomas, P., Straube, A.V., Grima, R.: ‘The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions’, BMC Syst. Biol., 2012, 6, pp. 1–23 (doi: 10.1186/1752-0509-6-39).
-
-
17)
-
29. Hill, E.K., de Mello, A.J.: ‘Single-molecule detection using confocal fluorescence detection: assessment of optical probe volumes’, Analyst, 2000, 125, (6), pp. 1033–1036 (doi: 10.1039/b002242j).
-
-
18)
-
3. Kemper, K., Sprick, M.R., de Bree, M., et al: ‘The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation’, Cancer Res., 2010, 70, (2), pp. 719–729 (doi: 10.1158/0008-5472.CAN-09-1820).
-
-
19)
-
11. Zapperi, S., La Porta, C.A.M.: ‘Do cancer cells undergo phenotypic switching? The case for imperfect cancer stem cell markers’, Sci. Rep., UK, 2012, 2, pp. 1–7.
-
-
20)
-
2. Vermeulen, L., Sprick, M.R., Kemper, K., Stassi, G., Medema, J.P.: ‘Cancer stem cells – old concepts, new insights’, Cell Death Differ., 2008, 15, (6), pp. 947–958 (doi: 10.1038/cdd.2008.20).
-
-
21)
-
27. Anderson, M.T., Tjioe, I.M., Lorincz, M.C., et al: ‘Simultaneous fluorescence-activated cell sorter analysis of two distinct transcriptional elements within a single cell using engineered green fluorescent proteins’, Proc. Natl. Acad. Sci. USA, 1996, 93, (16), pp. 8508–8511 (doi: 10.1073/pnas.93.16.8508).
-
-
22)
-
32. Werner, J.H., McCarney, E.R., Keller, R.A., Plaxco, K.W., Goodwin, P.M.: ‘Increasing the resolution of single pair fluorescence resonance energy transfer measurements in solution via molecular cytometry’, Anal. Chem., 2007, 79, (9), pp. 3509–3513 (doi: 10.1021/ac070142c).
-
-
23)
-
15. Roussel, M.R., Tang, T.: ‘Simulation of mRNA diffusion in the nuclear environment’, IET Syst. Biol., 2012, 6, (4), pp. 125–U162 (doi: 10.1049/iet-syb.2011.0032).
-
-
24)
-
31. Fillmore, C.M., Kuperwasser, C.: ‘Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy’, Breast Cancer Res., 2008, 10, (2), pp. 1–13 (doi: 10.1186/bcr1982).
-
-
25)
-
6. Lapidot, T., Sirard, C., Vormoor, J., et al: ‘A cell initiating human acute myeloid-leukemia after transplantation into SCID mice’, Nature, 1994, 367, (6464), pp. 645–648 (doi: 10.1038/367645a0).
-
-
26)
-
13. Wallace, E.W.J., Gillespie, D.T., Sanft, K.R., Petzold, L.R.: ‘Linear noise approximation is valid over limited times for any chemical system that is sufficiently large’, IET Syst. Biol., 2012, 6, (4), pp. 102–115 (doi: 10.1049/iet-syb.2011.0038).
-
-
27)
-
28. Huebner, A., Srisa-Art, M., Holt, D., et al: ‘Quantitative detection of protein expression in single cells using droplet microfluidics’, Chem. Commun., 2007, (12), pp. 1218–1220 (doi: 10.1039/b618570c).
-
-
28)
-
30. Adams, D.S., Levin, M.: ‘General principles for measuring resting membrane potential and ion concentration using fluorescent bioelectricity reporters’, Cold Spring Harb. Protoc., 2012, 2012, (4), pp. 385–397.
-
-
29)
-
1. Medema, J.P.: ‘Cancer stem cells: the challenges ahead’, Nat. Cell Biol., 2013, 15, (4), pp. 338–344 (doi: 10.1038/ncb2717).
-
-
30)
-
9. Magee, J.A., Piskounova, E., Morrison, S.J.: ‘Cancer stem cells: impact, heterogeneity, and uncertainty’, Cancer Cell, 2012, 21, (3), pp. 283–296 (doi: 10.1016/j.ccr.2012.03.003).
-
-
31)
-
7. Visvader, J.E.: ‘Cells of origin in cancer’, Nature, 2011, 469, (7330), pp. 314–322 (doi: 10.1038/nature09781).
-
-
32)
-
26. Stavis, S.M., Edel, J.B., Li, Y., Samiee, K.T., Luo, D., Craighead, H.G.: ‘Detection and identification of nucleic acid engineered fluorescent labels in submicrometre fluidic channels’, Nanotechnology, 2005, 16, (7), pp. S314–S323 (doi: 10.1088/0957-4484/16/7/002).
-
-
33)
-
19. Yen-Chen Fu, A.: ‘Microfabricated fluorescence-activated cell sorters (mu FACS) for screening bacterial cells’ (California Institute of Technology, 2002).
-
-
1)