access icon free Theoretical analysis on the relationship between left ventricular energetic efficiency and acute infarct size

Energetic efficiency is an important indicator of cardiac function in acute myocardial infarction. However, the relationship between cardiac energetic efficiency and infarct size is not perfectly elucidated. In this study, the relationship is analysed by means of simulation using a theoretical model of the guinea pig left ventricle. In simulation with varied ratios of infarct area, pressure–volume area (PVA), which is an index of total mechanical energy by ventricular contraction, and myocardial oxygen consumption (MVO2) are calculated for each infarct ratio. Then, change of PVA when MVO2 alters (PVA/MVO2) as a well-known index of energy conversion efficiency is evaluated. In addition, PVA/VO2, which represents a ratio of PVA change to alteration of mean oxygen consumption of myocytes except for infarct myocytes, is introduced as an index for real energetic efficiency. In simulation results, PVA/MVO2 increases but PVA/VO2 decreases as infarct area expands, because with expansion of infarct area PVA decreases but VO2 remains almost unchanged because of larger shortening of myocytes. This implies that the enlargement of shortening of noninfarcted myocyte to compensate for depression of cardiac output is a potential cause of myocardial remodelling.

Inspec keywords: blood vessels; cellular biophysics; haemodynamics; cardiology; physiological models; oxygen; muscle

Other keywords: energetic efficiency index; infarct myocytes; cardiac output; ventricular contraction; total mechanical energy; acute infarct size; cardiac function; cardiac energetic efficiency; theoretical analysis; myocardial remodelling; guinea pig left ventricle; myocyte mean oxygen consumption; noninfarcted myocyte shortening enlargement; acute myocardial infarction; energy conversion efficiency; pressure-volume area; left ventricular energetic efficiency; myocardial oxygen consumption

Subjects: Haemodynamics, pneumodynamics; Cellular biophysics; External and internal data communications, nerve conduction and synaptic transmission; Rheology of body fluids

References

    1. 1)
      • 3. Tian, R., Gaudron, P., Neubauer, S., Hu, K., Ertl, G.: ‘Alterations of performance and oxygen utilization in chronically infarcted rat hearts’, J. Mol. Cell. Cardiol., 1996, 28, (2), pp. 321330 (doi: 10.1006/jmcc.1996.0030).
    2. 2)
      • 1. Pfeffer, M.A., Pfeffer, J.M., Fishbein, M.C., et al: ‘Myocardial infarct size and ventricular function in rats’, Circ. Res., 1979, 44, (4), pp. 503512 (doi: 10.1161/01.RES.44.4.503).
    3. 3)
      • 15. Matsushita, T., Takaki, M., Fujii, W., Matsubara, H., Suga, H.: ‘Left ventricular mechanoenergetics under altered coronary perfusion in guinea pig hearts’, Jpn. J. Physiol., 1995, 45, (6), pp. 9911004 (doi: 10.2170/jjphysiol.45.991).
    4. 4)
      • 7. Suga, H., Sagawa, K., Shoukas, A.A.: ‘Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio’, Circ. Res., 1973, 32, (3), pp. 314322 (doi: 10.1161/01.RES.32.3.314).
    5. 5)
      • 16. Gross, D.R.: ‘Normal Cardiac Function Parameters’, in ‘Animal models in cardiovascular research’ (Springer, 2009), pp. 5564.
    6. 6)
      • 12. Matsuoka, S., Sarai, N., Jo, H., Noma, A.: ‘Simulation of ATP metabolism in cardiac excitation-contraction coupling’, Prog. Biophys. Mol. Biol., 2004, 85, (2–3), pp. 279299 (doi: 10.1016/j.pbiomolbio.2004.01.006).
    7. 7)
      • 4. Hayashi, Y., Takeuchi, M., Takaoka, H., Hata, K., Mori, M., Yokoyama, M.: ‘Alteration in energetics in patients with left ventricular dysfunction after myocardial infarction: increased oxygen cost of contractility’, Circulation, 1996, 93, (5), pp. 932939 (doi: 10.1161/01.CIR.93.5.932).
    8. 8)
      • 5. Neubauer, S., Horn, M., Naumann, A., et al: ‘Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction’, J. Clin. Invest., 1995, 95, (3), pp. 10921100 (doi: 10.1172/JCI117756).
    9. 9)
      • 10. Kuzumoto, M., Takeuchi, A., Nakai, H., Oka, C., Noma, A., Matsuoka, S.: ‘Simulation analysis of intracellular Na+ and Cl homeostasis during β1-adrenergic stimulation of cardiac myocyte’, Prog. Biophys. Mol. Biol., 2008, 96, (1–3), pp. 171186 (doi: 10.1016/j.pbiomolbio.2007.07.005).
    10. 10)
      • 6. Suga, H.: ‘Total mechanical energy of a ventricle model and cardiac oxygen consumption’, Am. J. Physiol. – Heart Circ. Physiol., 1979, 236, (3), pp. H498H505.
    11. 11)
      • 9. Suga, H.: ‘Ventricular energetics’, Physiol. Rev., 1990, 70, (2), pp. 247277.
    12. 12)
      • 2. Fletcher, P.J., Pfeffer, J.M., Pfeffer, M.A., Braunwald, E.: ‘Left ventricular diastolic pressure–volume relations in rats with healed myocardial infarction: effects on systolic function’, Circ. Res., 1981, 49, (3), pp. 618626 (doi: 10.1161/01.RES.49.3.618).
    13. 13)
      • 13. Heyndrickx, G.R., Millard, R.W., McRitchie, R.J., Maroko, P.R., Vatner, S.F.: ‘Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs’, J. Clin. Invest., 1975, 56, (4), pp. 978985 (doi: 10.1172/JCI108178).
    14. 14)
      • 14. Sanbe, A., Tanonaka, K., Hanaoka, Y., Katoh, T., Takeo, S.: ‘Regional energy metabolism of failing hearts following myocardial infarction’, J. Mol. Cell. Cardiol., 1993, 25, (9), pp. 9951013 (doi: 10.1006/jmcc.1993.1113).
    15. 15)
      • 11. Matsuoka, S., Sarai, N., Kuratomi, S., Ono, K., Noma, A.: ‘Role of individual ionic current systems in ventricular cells hypothesized by a model study’, Jpn J. Physiol., 2003, 53, (2), pp. 105123 (doi: 10.2170/jjphysiol.53.105).
    16. 16)
      • 8. Sagawa, K., Suga, H., Shoukas, A.A., Bakalar, K.M.: ‘End-systolic pressure/volume ratio: a new index of ventricular contractility’, Am. J. Cardiol., 1977, 40, (5), pp. 748753 (doi: 10.1016/0002-9149(77)90192-8).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2011.0080
Loading

Related content

content/journals/10.1049/iet-syb.2011.0080
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading