Local network-based measures to assess the inferability of different regulatory networks
Local network-based measures to assess the inferability of different regulatory networks
- Author(s): F. Emmert-Streib and G. Altay
- DOI: 10.1049/iet-syb.2010.0028
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): F. Emmert-Streib 1 and G. Altay 1
-
-
View affiliations
-
Affiliations:
1: Computational Biology and Machine Learning, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
-
Affiliations:
1: Computational Biology and Machine Learning, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
- Source:
Volume 4, Issue 4,
July 2010,
p.
277 – 288
DOI: 10.1049/iet-syb.2010.0028 , Print ISSN 1751-8849, Online ISSN 1751-8857
- « Previous Article
- Table of contents
- Next Article »
The purpose of this study is to compare the inferability of various synthetic as well as real biological regulatory networks. In order to assess differences we apply local network-based measures. That means, instead of applying global measures, we investigate and assess an inference algorithm locally, on the level of individual edges and subnetworks. We demonstrate the behaviour of our local network-based measures with respect to different regulatory networks by conducting large-scale simulations. As inference algorithm we use exemplarily ARACNE. The results from our exploratory analysis allow us not only to gain new insights into the strength and weakness of an inference algorithm with respect to characteristics of different regulatory networks, but also to obtain information that could be used to design novel problem-specific statistical estimators. [Includes supplementary material]
Inspec keywords: inference mechanisms; genetics; bioinformatics; genomics
Other keywords: inferability assessment; local network-based measures; biological regulatory networks; inference algorithm; synthetic regulatory network; exploratory analysis; statistical estimator; ARACNE; large-scale simulation
Subjects: Knowledge engineering techniques; Biology and medical computing; Genomic techniques; Biomolecular interactions, charge transfer complexes
References
-
-
1)
- M.J. Callow , S. Dudoit , E.L. Gong , T.P. Speed , E.M. Rubin . Microarray expression profiling identifies genes with altered expression in HDL-deficient mice. Genome Res. , 12 , 2022 - 2029
-
2)
- T.V. Van den Bulcke , K. Van Leemput , N.P. van Remortel . SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinf. , 7 - 43
-
3)
- A. Fersht . (1985) Enzyme structure and mechanism.
-
4)
- D. Hwang , A.G. Rust , S. Ramsey . A data integration methodology for systems biology. Proc. Natl. Acad. Sci. USA , 48 , 17296 - 17301
-
5)
- A.A. Margolin , I. Nemenman , K. Basso . ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf.
-
6)
- S. Liang , S. Fuhrman , R. Somogyi . Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pacific Symp. Biocomputing , 18 - 29
-
7)
- G. Stolovitzky , D. Monroe , A. Califano . Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann. N. Y. Acad. Sci. , 1 - 22
-
8)
- N. Friedman . Inferring cellular networks using probabilistic graphical models. Science , 5659 , 799 - 805
-
9)
- H. Hache , H. Lehrach , R. Herwig . Reverse engineering of gene regulatory networks: a comparative study. EURASIP J. Bioinf. Syst. Biol.
-
10)
- G. Altay , F. Emmert-Streib . Revealing differences in gene network inference algorithms on the network-level by ensemble methods. Bioinformatics , 14 , 1738 - 1744
-
11)
- J.H. Hofmeyr , A. Cornish-Bowden . The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models. Comput. Appl. Biosci. , 377 - 385
-
12)
- P.E. Meyer , F. Lafitte , G. Bontempi . Minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinf.
-
13)
- N. Soranzo , G. Bianconi , C. Altafini . Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics , 13 , 1640 - 1647
-
14)
- J.S. Hamid , P. Hu , N.M. Roslin , V. Ling , C.M.T. Greenwood , J. Beyene . Data integration in genetics and genomics: methods and challenges. Hum. Genomics Proteomics
-
15)
- T.R. Lezon , J.R. Banavar , M. Cieplak , A. Maritan , N.V. Fedoroff . Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns. Proc. Natl. Acad. Sci. USA , 50 , 19033 - 19038
-
16)
- (2008) A language and environment for statistical computing.
-
17)
- C. Olsen , P.E. Meyer , G. Bontempi . On the impact of entropy estimation on transcriptional regulatory network inference based on mutual information. EUROSIP J. Bioinf. Syst. Biol.
-
18)
- Butte, A.J., Kohane, I.S.: `Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements', Pacific Symp. Biocomputing, 2000, 5, p. 415–426.
-
19)
- F. Emmert-Streib . The chronic fatigue syndrome: a comparative pathway analysis. J. Comput. Biol. , 7 , 961 - 972
-
20)
- R. Milo , S. Shen-Orr , S. Itzkovitz , N. Kashtan , D. Chklovskii , U. Alon . Network motifs: simple building blocks of complex networks. Science , 5594 , 824 - 827
-
21)
- M.B. Eisen , P.T. Spellman , P.O. Brown , D. Botstein . Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. , 25 , 14863 - 14868
-
22)
- O.G. Troyanskaya , M.E. Garber , P.O. Brown , D. Botstein , R.B. Altman . Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics , 11 , 1454 - 1461
-
23)
- L. Klebanov , G. Glazko , P. Salzman , A. Yakovlev , Y. Xiao . A multivariate extension of the gene set enrichment analysis. J. Bioinf. Comput Biol. , 5 , 1139 - 1153
-
24)
- H. Hache , C. Wierling , H. Lehrach , R. Herwig . GeNGe: systematic generation of gene regulatory networks. Syst. Biol. , 1205 - 1207
-
25)
- J. Pearl . (1988) Probabilistic reasoning in intelligent systems.
-
26)
- P. Carmona-Saez , R.D. Pascual-Marqui , F. Tirado , J.M. Carazo , A. Pascual-Montano . Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinf.
-
27)
- A.L. Barabasi , R. Albert . Emergence of scaling in random networks. Science , 509 - 512
-
28)
- D. Camacho , Licona Paola Vera , P. Mendes , Reinhard Laubenbacher . Comparison of reverse-engineering methods using an in silico network. Ann. N. Y. Acad. Sci. , 73 - 89
-
29)
- S. Shen-Orr , R. Milo , S. Mangan , U. Alon . Network motifs in the transcriptional regulatory network of Escherichia coli. Nat. Genet. , 64 - 68
-
30)
- A.J. Butte , P. Tamayo , D. Slonim , T.R. Golub , I.S. Kohane . Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl. Acad. Sci. USA , 22 , 12182 - 12186
-
31)
- D. Husmeier . Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics , 17 , 2271 - 2282
-
32)
- A.V. Werhli , M. Grzegorczyk , D. Husmeier . Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics , 20 , 2523 - 2531
-
33)
- P. Mendes , W. Sha , K. Ye . Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics , ii122 - ii129
-
34)
- I. Cantone , L. Marucci , F. Iorio . A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell , 172 - 181
-
35)
- D.C. Hoaglin , F. Mosteller , J.W. Tukey . (1983) Understanding robust and exploratory data analysis.
-
36)
- P. Erdös , A. Rényi . On random graphs. Publ. Math. , 290 - 297
-
37)
- Csardi, G., Nepusz, T.: igraph-package for R, 2008.
-
38)
- M. Xiong , J. Li , X. Fang . Identification of genetic networks. Genetics , 1037 - 1052
-
39)
- F. Crick . Central dogma of molecular biology. Nature , 561 - 563
-
40)
- P.E. Meyer , K. Kontos , G. Bontempi . Information-theoretic inference of large transcriptional regulatory networks. EUROSIP J. Bioinf. Syst. Biol.
-
41)
- G. Glazko , F. Emmert-Streib . Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics , 18 , 2348 - 2354
-
42)
- M. Bansal , D. di Bernardo . Inference of gene networks from temporal gene expression profiles. IET Syst. Biol. , 5 , 306 - 312
-
43)
- K.C. Liang , X. Wang . Gene regulatory network reconstruction using conditional mutual information. EURASIP J. Bioinf. Syst. Biol.
-
44)
- F. Emmert-Streib , M. Dehmer . (2008) Analysis of microarray data: a network based approach.
-
45)
- T.M. Cover , J.A. Thomas . (1991) Information theory.
-
46)
- D. Marbach , R.J. Prill , T. Schaffter , C. Mattiussi , D. Floreano , G. Stolovitzky . Revealing strengths and weaknesses of methods for gene network inference. Proc. Natl. Aca. Sci. , 14 , 6286 - 6291
-
47)
- A. Subramanian , P. Tamayo , V.K. Mootha . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA , 43 , 15545 - 15550
-
48)
- H.W. Ma , B. Kumar , U. Ditges , F. Gunzer , J. Buer , A.P. Zeng . An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res. , 6643 - 6649
-
1)

Related content
