Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Networks for systems biology: conceptual connection of data and function

Networks for systems biology: conceptual connection of data and function

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The purpose of this study is to survey the use of networks and network-based methods in systems biology. This study starts with an introduction to graph theory and basic measures allowing to quantify structural properties of networks. Then, the authors present important network classes and gene networks as well as methods for their analysis. In the last part of this study, the authors review approaches that aim at analysing the functional organisation of gene networks and the use of networks in medicine. In addition to this, the authors advocate networks as a systematic approach to general problems in systems biology, because networks are capable of assuming multiple roles that are very beneficial connecting experimental data with a functional interpretation in biological terms.

References

    1. 1)
      • E. Ravasz , J. Mcdermott , R. Samudrala , R. Bumgarner , K. Montgomery , R. Ireton . (2009) Detecting hierarchical modularity in biological networks, Computer system biology.
    2. 2)
      • Laubenbacher, R.C.: `Modeling and simulation of biological networks', Proc. Symp. on Applied Mathematics, 2007.
    3. 3)
      • S.N. Dorogovtsev , J.F.F. Mendes . (2003) Evolution of networks. from biological networks to the internet and WWW.
    4. 4)
      • F. Harary . (1967) Graph theory and theoretical physics.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • D. Minoli . Combinatorial graph complexity. Atti. Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. , 651 - 661
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • J. Wang , G. Provan , J. Zhou . (2009) Characterizing the structural complexity of realworld complex networks.
    15. 15)
    16. 16)
    17. 17)
      • T.J. Hastie , R.J. Tibshirani , J. Friedman . (2001) The elements of statistical learning.
    18. 18)
      • T. Wilhelm , H.-P. Nasheuer , S. Huang . Physical and functional modularity of the protein network in yeast. Mol. Cell. Proteom. , 5 , 292 - 298
    19. 19)
    20. 20)
      • S. Wasserman , K. Faust . (1994) Social network analysis.
    21. 21)
      • D. König . (1936) Theorie der endlichen und unendlichen graphen.
    22. 22)
      • T. Nogrady , D.F. Weaver . (2005) Medicinal chemistry: a molecular and biochemical approach.
    23. 23)
    24. 24)
      • M. Zaslavskiy , F. Bach , J.P. Vert . Global alignment of protein–protein interaction networks by graph matching methods. Bioinformatics , 12 , 1259 - 1267
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • T. Ihringer . (1994) Diskrete mathematik.
    29. 29)
      • E. Sommerfeld . (1994) Kognitive strukturen.
    30. 30)
      • T.H. Cormen , C.E. Leiserson , R.L. Rivest , C. Stein . (2009) Introduction to algorithms.
    31. 31)
      • L. Euler . Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. U. Petrop. , 128 - 140
    32. 32)
      • M. Behzad , G. Chartrand , L. Lesniak-Foster . (1979) Graphs and digraphs. International Series. Prindle.
    33. 33)
    34. 34)
      • D. Cook , L.B. Holder . (2007) Mining graph data.
    35. 35)
      • G.H. Bakir , T. Hofmann , B. Schlkopf , A.J. Smola , B. Taskar , S.V.N. Vishwanathan . (2007) Predicting structured data.
    36. 36)
      • A. Wagner . The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. , 7 , 1283 - 1292
    37. 37)
      • S.L. Lauritzen , A.C. Atkinson , R.J. Carroll , D.J. Hand , D.A. Pierce , D.M. Titterington . (1996) Graphical models.
    38. 38)
      • F. Emmert-Streib , M. Dehmer . (2008) Analysis of microarray data: a network-based approach.
    39. 39)
      • J.L. Gross , J. Yellen . (1999) Graph theory and its applications.
    40. 40)
    41. 41)
      • A. Mowshowitz , V. Mitsou , M. Dehmer , F. Emmert-Streib . (2009) Entropy, orbits and spectra of graphs.
    42. 42)
      • B. Zelinka . On a certain distance between isomorphism classes of graphs. Časopis pro p̌est. Mathematiky , 371 - 373
    43. 43)
    44. 44)
      • P. Lambrix , W. Dubitzky , F. Azuaje . (2006) Ontologies in bioinformatics and systems biology.
    45. 45)
      • V.A. Skorobogatov , A.A. Dobrynin . Metrical analysis of graphs. Commun. Math. Comp. Chem. , 105 - 155
    46. 46)
      • M. Li , P. Vitanyi . (1993) An introduction to Kolmogorov complexity and its applications.
    47. 47)
    48. 48)
    49. 49)
    50. 50)
      • S. Bornholdt , H.G. Schuster . (2003) Handbook of graphs and networks: from the genome to the internet.
    51. 51)
    52. 52)
    53. 53)
      • L. von Bertalanffy . (1968) General system theory: foundation, development, application.
    54. 54)
    55. 55)
    56. 56)
      • S. Toda . Graph isomorphism: its complexity and algorithms (abstract).
    57. 57)
      • Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Szegedy, B., Vesztergombi, K.: `Graph limits and parameter testing', Proc. 38th Ann. ACM Symp. on Theory of Computing, 2006, Seattle, WA, USA, p. 261–270.
    58. 58)
    59. 59)
    60. 60)
    61. 61)
      • P.H. Winne , L. Gupta , J.C. Nesbit . Exploring individual differences in studying strategies using graph theoretic statistics. Alberta J. Edu. Res. , 177 - 193
    62. 62)
      • Horváth, T., Gärtner, T., Wrobel, S.: `Cyclic pattern kernels for predictive graph mining', Proc. 2004 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 2004, p. 158–167.
    63. 63)
    64. 64)
      • A. Cayley . (1875) On the analytical forms called trees, with application to the theory of chemical combinatorics.
    65. 65)
      • M. Brinkmeier , T. Schank , U. Brandes , T. Erlebach . (2005) Network statistics, Network analysis.
    66. 66)
    67. 67)
    68. 68)
      • H. Schöbbermeyer , B.H. Junker , F. Schreiber . (2008) Network motifs, Analysis of biological networks, Wiley Series in Bioinformatics.
    69. 69)
    70. 70)
      • P. Pudlák , V. Rödl , P. Savickiÿ . Graph complexity. Acta Inf. , 515 - 535
    71. 71)
      • C. Shannon , W. Weaver . (1949) The mathematical theory of communication.
    72. 72)
      • R. Todeschini , V. Consonni , R. Mannhold . (2002) Handbook of molecular descriptors.
    73. 73)
    74. 74)
      • S.C. Basak , V.R. Magnuson . Molecular topology and narcosis. Arzeim.-Forsch/Drug Design , 501 - 503
    75. 75)
    76. 76)
    77. 77)
      • E.D. Kolaczyk . (2009) Statistical analysis of network data: methods and models.
    78. 78)
    79. 79)
    80. 80)
      • S.M. Dancoff , H. Quastler , H. Quastler . (1953) Information content and error rate of living things.
    81. 81)
    82. 82)
    83. 83)
    84. 84)
    85. 85)
      • J. Pearl . (1988) Probabilistic reasoning in intelligent systems.
    86. 86)
    87. 87)
    88. 88)
      • D. Bonchev . (1983) Information theoretic indices for characterization of chemical structures.
    89. 89)
      • Mehler, A., Dehmer, M., Gleim, R.: `Towards logical hypertext structure a graph-theoretic perspective', Proc. I2CS'04, (Lecture Notes), 2005, p. 136–150.
    90. 90)
    91. 91)
    92. 92)
    93. 93)
    94. 94)
      • Slonim, N.: `The Information bottleneck: theory and applications', 2002, PhD, Hebrew University.
    95. 95)
      • M.R. Garey , D.S. Johnson , V. Klee . (1979) Computers and intractability: a guide to the theory of NP-completeness, Series of books in the mathematical sciences.
    96. 96)
    97. 97)
      • Kondor, R.I., Lafferty, J.: `Diffusion kernels on graphs and other discrete input spaces', Machine learning: Proc. 19th Int. Conf., 2002, San Mateo, CA.
    98. 98)
    99. 99)
    100. 100)
    101. 101)
    102. 102)
      • F. Emmert-Streib , M. Dehmer , J. Kilian . Classification of large graphs by a local tree decomposition.
    103. 103)
    104. 104)
    105. 105)
    106. 106)
    107. 107)
      • C. Berge . (1989) Hypergraphs: combinatorics of finite sets.
    108. 108)
      • P. Erdös , A. Rényi . On random graphs. Publ. Math. Inst. Hung. Acad. Sci.
    109. 109)
    110. 110)
    111. 111)
    112. 112)
      • F.V. Jensen , T.D. Nielsen , M. Jordan , J. Kleinburg , B. Schölkopf . (2007) Bayesian networks and decision graphs, Information science and statistics.
    113. 113)
    114. 114)
    115. 115)
      • M. Dehmer , F. Lehner , F. Bodendorf . (2006) Strukturelle analyse web-basierter dokumente.
    116. 116)
    117. 117)
    118. 118)
      • S. Even . (1979) Graph algorithms.
    119. 119)
    120. 120)
      • D. Bonchev , D.H. Rouvray , P.G. Mezey . (2005) Complexity in chemistry, biology, and ecology.
    121. 121)
    122. 122)
      • P.E. Meyer , K. Kontos , F. Lafitte , G. Bontempi . Informationtheoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinf. Syst. Biol.
    123. 123)
    124. 124)
    125. 125)
      • M. Randić , D. Plavšić . On the concept of molecular complexity. Croatica Chem. Acta , 107 - 116
    126. 126)
    127. 127)
    128. 128)
    129. 129)
    130. 130)
      • X. Li , I. Gutman . (2006) Mathematical aspects of Randić-Type molecular structure descriptors’, in ‘Mathematical chemistry monographs.
    131. 131)
    132. 132)
    133. 133)
      • D. Koschützki , K.A. Lehmann , L. Peters , S. Richter , D. Tenfelde-Podehl , O. Zlotkowski , U. Brandes , T. Erlebach . (2005) Clustering, Centrality indices.
    134. 134)
    135. 135)
    136. 136)
      • N. Tishby , F.C. Pereira , W. Bialek , B. Hajek , R.S. Sreenivas . (2009) The information bottleneck method.
    137. 137)
    138. 138)
      • Bunke, H.: `Graph matching: theoretical foundations, algorithms, and applications', Proc. Vision Interface 2000, 2000, p. 82–88.
    139. 139)
    140. 140)
      • D. Chowdhury , D. Stauffer . (2000) Principles of equilibrium statistical mechanics.
    141. 141)
    142. 142)
      • D.M. Cvetkovic , M. Doob , H. Sachs . (1997) Spectra of graphs. Theory and application.
    143. 143)
    144. 144)
    145. 145)
    146. 146)
    147. 147)
    148. 148)
    149. 149)
      • U. Alon . (2006) An introduction to systems biology: design principles of biological circuits.
    150. 150)
    151. 151)
    152. 152)
    153. 153)
    154. 154)
      • J. Felsenstein . (2003) Inferring phylogenies.
    155. 155)
      • H. Bunke , M. Neuhaus , D. Cook , L.B. Holder . (2007) Graph matching. exact and error-tolerant methods and the automatic learning of edit costs, Mining graph data.
    156. 156)
    157. 157)
    158. 158)
    159. 159)
    160. 160)
      • M.V. Diudea , I. Gutman , L. Jäntschi . (2001) Molecular topology.
    161. 161)
      • A. Brandstädt , V.B. Le , J.P. Sprinrand . (1999) Graph classes. A survey.
    162. 162)
    163. 163)
      • J. Bang-Jensen , G. Gutin . (2002) Digraphs. theory, algorithms and applications.
    164. 164)
    165. 165)
    166. 166)
    167. 167)
    168. 168)
    169. 169)
      • S. Skiena , S. Pemmaraju , S. Skiena . (1990) Graph isomorphism, Implementing discrete mathematics: combinatorics and graph theory with mathematica.
    170. 170)
      • R. Halin . (1989) Graphentheorie.
    171. 171)
    172. 172)
      • Van Dongen, S.: `Graph clustering by flow simulation', 2000, PhD thesis, Centers for Mathematics and Computer Science (CWI), University of Utrecht.
    173. 173)
    174. 174)
      • J. Devillers , A.T. Balaban . (1999) Topological indices and related descriptors in QSAR and QSPR.
    175. 175)
      • D. Bonchev . Information indices for atoms and molecules. Commun. Math. Comp. Chem. , 65 - 113
    176. 176)
      • B.H. Junker , F. Schreiber , Y. Pan , A.Y. Zomaya . (2008) Analysis of biological networks.
    177. 177)
    178. 178)
    179. 179)
    180. 180)
      • N. Trinajstić . (1992) Chemical graph theory.
    181. 181)
    182. 182)
    183. 183)
      • R. Singh , J. Xu , B. Berger . Pairwise global alignment of protein interaction networks by matching neighborhood topology.
    184. 184)
      • F. Harary . (1969) Graph theory.
    185. 185)
    186. 186)
    187. 187)
    188. 188)
    189. 189)
    190. 190)
    191. 191)
    192. 192)
    193. 193)
    194. 194)
    195. 195)
      • F. Sobik . Graphmetriken und Klassifikation strukturierter Objekte. ZKIInf., Akad. Wiss. DDR , 82 , 63 - 122
    196. 196)
    197. 197)
    198. 198)
      • D. Koschützki , F. Schreiber . Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regulat. Syst. Biol.
    199. 199)
    200. 200)
    201. 201)
    202. 202)
      • Wernicke, S.: `A faster algorithm for detecting network motifs', Proc. 5th Workshop on Algorithms in Bioinformatics, (WABI'05), (LNCS, 3692), 2005, p. 165–177.
    203. 203)
    204. 204)
      • P. Erdös , A. Rényi . On random graphs. Publ. Math. , 290 - 297
    205. 205)
      • A. Trewavai . A brief history of systems biology: every object that biology studies is a system of systems’, in Jacob F. (Ed.) (1974), ‘Plant cell’, 2006.
    206. 206)
      • F. Kaden . Graphmetriken und Isometrieprobleme zugehöriger distanzgraphen. ZKI-Informationen, Akad. Wiss. DDR , 1 - 100
    207. 207)
    208. 208)
      • F. Buckley , F. Harary . (1990) Distance in graphs.
    209. 209)
      • G. Stolovitzky , A. Califano . (2007) Reverse engineering biological networks: opportunities and challenges in computational methods for pathway inference.
    210. 210)
    211. 211)
      • F. Emmert-Streib , L. Chen , J. Storey . Functional annotation of genes in saccharomyces cerevisiae based on joint betweenness.
    212. 212)
    213. 213)
    214. 214)
    215. 215)
    216. 216)
    217. 217)
      • N. Cristianini , J. Shawe-Taylor . (2000) An introduction to support vector machines.
    218. 218)
      • A. Mehler , A. Mehler , S. Sharoff , G. Rehm , M. Santini . (2010) A quantitative graph model of social ontologies by example of wikipedia, Genres on the web: computational models and empirical studies.
    219. 219)
    220. 220)
    221. 221)
    222. 222)
      • S. Wasserman , K. Faust . (1994) Social network analysis: methods and applications, Structural analysis in the social sciences.
    223. 223)
    224. 224)
      • Goh Kwang-Il , M.E. Cusick , D. Valle , B. Childs , M. Vidal , A. Barabasi . The human disease network. Proc. Nat. Acad. Sci. , 21 , 8685 - 8690
    225. 225)
      • F. (Ed.) Roberts . (1989) Applications of combinatorics and graph theory to the biological and social sciences series.
    226. 226)
    227. 227)
      • E. Sommerfeld , F. Sobik , D. Albert . (1994) Operations on cognitive structures – their modeling on the basis of graph theory, Knowledge structures.
    228. 228)
    229. 229)
    230. 230)
      • R. Bellman . (1957) Dynamic Programming’, in ‘International series.
    231. 231)
      • C. Semple , M. Steel , J. Ball , D. Welsh . (2003) Phylogenetics, Graduate Series mathematics and its applications.
    232. 232)
    233. 233)
      • D. Gernert . Measuring the similarity of complex structures by means of graph grammars. Bull. EATCS , 3 - 9
    234. 234)
      • U. Brandes , T. Erlebach . (2005) Network analysis.
    235. 235)
    236. 236)
      • O. Wolkenhauer . (2008) Systems biology.
    237. 237)
    238. 238)
    239. 239)
      • L.R. Foulds . (1992) Graph theory applications.
    240. 240)
      • D. Gernert . Graph grammars which generate graphs with specified properties. Bull. EATCS , 13 - 20
    241. 241)
    242. 242)
      • A. Cayley . On the theory of analytic forms called trees. Phil. Mag. , 19 - 30
    243. 243)
    244. 244)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2010.0025
Loading

Related content

content/journals/10.1049/iet-syb.2010.0025
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address