Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Parameter identification, experimental design and model falsification for biological network models using semidefinite programming

Parameter identification, experimental design and model falsification for biological network models using semidefinite programming

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

One of the most challenging tasks in systems biology is parameter identification from experimental data. In particular, if the available data are noisy, the resulting parameter uncertainty can be huge and should be quantified. In this work, a set-based approach for parameter identification in discrete time models of biochemical reaction networks from time series data is developed. The basic idea is to determine an outer approximation to the set of parameters for which trajectories are consistent with the available data. In order to approximate the set of consistent parameters (SCP) a feasibility problem is derived. This feasibility problem is used to verify that complete parameter sets cannot contain consistent parameters. This method is very appealing because instead of checking a finite number of distinct points, complete sets are analysed. With this approach, model falsification simply corresponds to showing that the SCP is empty. Besides parameter identification, a novel set-based method for experimental design is presented. This method yields reliable predictions on the information content of future measurements also for the case of very limited a priori knowledge and uncertain inputs. The properties of the method are presented using a discrete time model of the MAP kinase cascade.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2009.0030
Loading

Related content

content/journals/10.1049/iet-syb.2009.0030
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address