Evolution of gene auto-regulation in the presence of noise

Access Full Text

Evolution of gene auto-regulation in the presence of noise

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Auto-regulatory negative feedback loops, where the protein expressed from a gene inhibits its own expression are common gene network motifs within cells. We investigate when will introducing a negative feedback mechanism be beneficial in terms of increasing a fitness function that is given by the probability of maintaining protein numbers above a critical threshold. Our results show the existence of a trade-off as introducing feedback decreases the average number of protein molecules driving this number closer to the critical threshold (which decreases fitness) but also reduces stochastic fluctuations around the mean (which increases fitness). We provide analytical conditions under which a negative feedback mechanism can evolve, that is, introducing feedback will increase the above fitness. Analyses of these conditions show that negative feedbacks are more likely to evolve when (i) the source of noise in the protein population is extrinsic (i.e. noise is caused by fluctuations in exogenous signals driving the gene network) and not intrinsic (i.e. the randomness associated with mRNA/protein expression and degradation); (ii) the dynamics of the exogenous signal causing extrinsic noise is slower than the protein dynamics; and (iii) the critical threshold level for the protein number is low. We also show that mRNA/protein degradation rates are critical factors in determining whether transcription or translational negative feedback should evolve. In particular, when the mRNA half-life is much shorter than the protein's half-life, then a transcriptional negative feedback mechanism is more likely to evolve. On the other hand, a translational negative feedback mechanism is preferred with more stable mRNAs that have long half-lifes.

Inspec keywords: feedback; macromolecules; genetics; molecular biophysics; proteins

Other keywords: autoregulatory negative feedback loops; fitness function; gene autoregulation; extrinsic noise; stochastic fluctuations; exogenous signal; protein dynamics; gene network motifs; transcription negative feedback; mRNA/protein expression; translational negative feedback; mRNA/protein degradation

Subjects: Physics of subcellular structures; Biomolecular dynamics, molecular probes, molecular pattern recognition; General, theoretical, and mathematical biophysics

References

    1. 1)
      • M. Elowitz , A. Levine , E. Siggia , P. Swain . Stochastic gene expression in a single cell. Science , 1183 - 1186
    2. 2)
      • J. Paulsson . Model of stochastic gene expression. Phy. Life Rev. , 157 - 175
    3. 3)
      • J. Paulsson . Summing up the noise in gene networks. Nature , 415 - 418
    4. 4)
      • B. Lehner . Selection to minimise noise in living systems and its implications for the evolution of gene expression. Mol. Syst. Biol. , 170
    5. 5)
      • J.P. Hespanha , R. Alur , G.J. Pappas . (2004) Stochastic hybrid systems: applications to communication networks, Hybrid systems: computation and control.
    6. 6)
      • P.S. Swain . Efficient attenuation of stochasticity in gene expression through post-transcriptional control. J. Mol. Biol. , 956 - 976
    7. 7)
      • M. Acar , A. Becskei , A. van Oudenaarden . Enhancement of cellular memory by reducing stochastic transitions. Nature , 228 - 232
    8. 8)
      • H.B. Fraser , A.E. Hirsh , G. Giaever , J. Kumm , M.B. Eisen . Noise minimization in eukaryotic gene expression. PLoS Biol.
    9. 9)
      • Y. Tao , X. Zheng , Y. Sun . Effect of feedback regulation on stochastic gene expression. J. Theor. Biol. , 827 - 836
    10. 10)
      • U. Alon . Network motifs: theory and experimental approaches. Nat. Rev. Genet. , 450 - 461
    11. 11)
      • M.C. Walters , S. Fiering , J. Eidemiller , W. Magis , M. Groudine , D.I.K. Martin . Enhancers increase the probability but not the level of gene expression. Proc. Natl. Acad. Sci. , 7125 - 7129
    12. 12)
      • W.J. Blake , M. Kaern , C.R. Cantor , J.J. Collins . Noise in eukaryotic gene expression. Nature , 633 - 637
    13. 13)
      • M. Russel , L. Gold , H. Morrissett , P.Z. O'Farrell . Translational, autogenous regulation of gene 32 expression during bacteriophage t4 infection. J. Biol. Chem. , 7263 - 7270
    14. 14)
      • J.L. Spudich , D.E. Koshland . Non-genetic individuality: chance in the single cell. Nature , 467 - 471
    15. 15)
      • V. Shahrezaei , P.S. Swain . Analytical distributions for stochastic gene expression. PNAS , 17256 - 17261
    16. 16)
      • M.A. Savageau . Comparison of classical and autogenous systems of regulation in inducible operons. Nature , 546 - 549
    17. 17)
      • M.E. Wall , W.S. Hlavacek , M.A. Savageau . Design principles for regulator gene expression in a repressible gene circuit. J. Mol. Biol. , 861 - 876
    18. 18)
      • A. Singh , J. Hespanha . Optimal feedback strength for noise suppression in autoregulatory gene networks. Biophys. J. , 10 , 4013 - 4023
    19. 19)
      • D. Orrell , H. Bolouri . Control of internal and external noise in genetic regulatory networks. J. Theor. Biol. , 301 - 312
    20. 20)
      • K. Sneppen , M.A. Micheelsen , I.B. Dodd . Ultrasensitive gene regulation by positive feedback loops in nucleosome modification. Mol. Syst. Biol. , 182
    21. 21)
      • M.H.A. Davis . (1993) Markov models and Optimization.
    22. 22)
      • V. Shahrezaei , J.F. Ollivier , P.S. Swain . Colored extrinsic fluctuations and stochastic gene expression. Mol. Syst. Biol. , 196
    23. 23)
      • L. Cai , C.K. Dalal , M.B. Elowitz . Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature , 485 - 490
    24. 24)
      • P.S. Swain , M.B. Elowitz , E.D. Siggia . Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS , 12795 - 12800
    25. 25)
      • M. Ptashne . (2004) Genetic switch: phage lambda revisited.
    26. 26)
      • M.L. Simpson , C.D. Cox , G.S. Sayler . Frequency domain analysis of noise in autoregulated gene circuits. PNAS , 4551 - 4556
    27. 27)
      • N. Rosenfeld , M. Elowitz , U. Alon . Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. , 785 - 793
    28. 28)
      • J.M. Raser , E.K. O'Shea . Noise in gene expression: origins, consequences, and control. Science , 2010 - 2013
    29. 29)
      • S. Hooshangi , R. Weiss . The effect of negative feedback on noise propagation in transcriptional gene networks. CHAOS
    30. 30)
      • Y. Dublanche , K. Michalodimitrakis , N. Kummerer , M. Foglierini , L. Serrano . Noise in transcription negative feedback loops: simulation and experimental analysis. Mol. Syst. Biol. , 41
    31. 31)
      • R. Tomioka , H. Kimura , T.J. Kobayashi , K. Aihara . Multivariate analysis of noise in genetic regulatory networks. J. Theor. Biol. , 501 - 521
    32. 32)
      • A. Becskei , L. Serrano . Engineering stability in gene networks by autoregulation. Nature , 590 - 593
    33. 33)
      • D. Thieffry , A.M. Huerta , E. Prez-Rueda , J. Collado-Vides . From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays , 433 - 440
    34. 34)
      • T. Nogueira , M. de Smit , M. Graffe , M. Springer . The relationship between translational control and mrna degradation for the Escherichia coli threonyl-trna synthetase gene. J. Mol. Biol. , 709 - 722
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2009.0002
Loading

Related content

content/journals/10.1049/iet-syb.2009.0002
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading