Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Scalable learning of large networks

Scalable learning of large networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Cellular networks inferred from condition-specific microarray data can capture the functional rewiring of cells in response to different environmental conditions. Unfortunately, many algorithms for inferring cellular networks do not scale to whole-genome data with thousands of variables. We propose a novel approach for scalable learning of large networks: cluster and infer networks (CIN). CIN learns network structures in two steps: (a) partition variables into smaller clusters, and (b) learn networks per cluster. We optionally revisit the cluster assignment of variables with poor neighbourhoods. Results on networks with known topologies suggest that CIN has substantial speed benefits, without substantial performance loss. We applied our approach to microarray compendia of glucose-starved yeast cells. The inferred networks had significantly higher number of subgraphs representing meaningful biological dependencies than random graphs. Analysis of subgraphs identified biological processes that agreed well with existing information about yeast populations under glucose starvation, and also implicated novel pathways that were previously not known to be associated with these populations. [Includes supplementary material]

References

    1. 1)
      • E. Segal , D. Pe'er , A. Regev , D. Koller , N. Friedman . Learning module networks. J. Mach. Learn. Res. , 557 - 588
    2. 2)
      • A.A. Margolin , I. Nemenman , K. Basso . ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf.
    3. 3)
      • H. De Jong . Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. , 1 , 67 - 103
    4. 4)
      • T.M. Cover , J.A. Thomas . (2006) Elements of information theory.
    5. 5)
      • L.Y. Inoue , M. Neira , C. Nelson , M. Gleave , R. Etzioni . Cluster-based network model for time-course gene expression data. Biostatistics (Oxford, England) , 3 , 507 - 525
    6. 6)
      • C. Allen , S. Büttner , A.D. Aragon . Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J. Cell Biol. , 1 , 89 - 100
    7. 7)
      • Xing, E., Sharan, R., Jordan, M.I.: `Bayesian haplo-type inference via the dirichlet process', ICML‘04: Proc. Twenty-First Int. Conf. Machine Learning, 2004, New York, NY, USA.
    8. 8)
      • M. Koivisto , K. Sood . Exact Bayesian structure discovery in bayesian networks. J. Mach. Learn. Res. , 549 - 573
    9. 9)
      • T.J. Hastie , R.J. Tibshirani , J. Friedman . (2001) The elements of statistical learning.
    10. 10)
      • Roy, S., Lane, T., Werner-Washburne, M.: `Learning structurally consistent undirected probabilistic graphical models', Technical Report TR-CS-2008-14, 2008.
    11. 11)
      • M. Ashburner , C.A. Ball , J.A. Blake . Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. , 1 , 25 - 29
    12. 12)
      • H. Salgado , S. Gama-Castro , M. Peralta-Gil . RegulonDB (version 5.0): escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res.
    13. 13)
      • R. Bonneau , D.J. Reiss , P. Shannon . The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome. Biol. , 5
    14. 14)
      • A. Blais , B. David Dynlacht . Constructing transcriptional regulatory networks. Genes. Dev. , 1499 - 1511
    15. 15)
      • Friedman, N., Nachman, I., Pe'er, D.: `Learning Bayesian network structure from massive datasets: the sparse candidate algorithm', Uncertainty in Artificial Intelligence, 1999.
    16. 16)
      • E. Segal , M. Shapira , A. Regev . Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. , 2 , 166 - 176
    17. 17)
      • Roy, S., Lane, T., Werner-Washburne, M., Martinez, D.: `Inference of functional networks of condition-specific response – a case study of quiescence in yeast', Proc. Pacific Symposium of Biocomputing (PSB), Hawaii, USA, 2009, p. 51–62.
    18. 18)
      • Heckerman, D.: `A Tutorial on learning Bayesian networks', Technical Report MSR-TR-95-06,, March 1995.
    19. 19)
      • P.H. Lee , D. Lee . Modularized learning of genetic interaction networks from biological annotations and mrna expression data. Bioinformatics , 11 , 2739 - 2747
    20. 20)
      • J.V. Gray , G.A. Petsko , G.C. Johnston , D. Ringe , R.A. Singer , M. Werner-Washburne . Sleeping beauty’: quiescence in saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. , 2 , 187 - 206
    21. 21)
      • N. Friedman . Inferring cellular networks using probabilistic graphical models. Science , 799 - 805
    22. 22)
      • H. Toh , K. Horimoto . Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics (Oxford, England) , 2 , 287 - 297
    23. 23)
      • Y.-B. He , Z. Geng . Active learning of causal networks with intervention experiments and optimal designs. J. Mach. Learn. Res. , 2523 - 2547
    24. 24)
      • S. Roy , M. Werner-Washburne , T. Lane . A system for generating transcription regulatory networks with combinatorial control of transcription. Bioinformatics (Oxford, England) , 1318 - 1320
    25. 25)
      • R. Milo , S. Shen-Orr , S. Itzkovitz , N. Kashtan , D. Chklovskii , U. Alon . Network motifs: simple building blocks of complex networks. Science , 5594 , 824 - 827
    26. 26)
      • P. Abbeel , D. Koller , A.Y. Ng . Learning factor graphs in polynomial time and sample complexity. J. Mach. Learn. Res. , 1743 - 1788
    27. 27)
      • Friedman, N., Koller, D.: `Being Bayesian about network structure', UAI ‘00: Proc. 16th Conf. Uncertainty in Artificial Intelligence, 2000, San Francisco, CA, USA, p. 201–210.
    28. 28)
      • K. Devarajan . Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol. , 7
    29. 29)
      • A.D. Aragon , A.L. Rodriguez , O. Meirelles . Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures. Mol. Biol. Cell , 3 , 1271 - 1280
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2008.0161
Loading

Related content

content/journals/10.1049/iet-syb.2008.0161
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address