http://iet.metastore.ingenta.com
1887

Role of inhibitory proteins as modulators of oscillations in NFκB signalling

Role of inhibitory proteins as modulators of oscillations in NFκB signalling

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors discuss the role of the Raf kinase inhibitory protein (RKIP) as a modulator of oscillations in NFκB signalling. A mathematical model of the NFκB signalling pathway was derived and the Lyapunov–Andronov theory was used to analyse dynamical properties of the system. The analytical results were complemented by predictive numerical simulations. Our results suggest that the nature of oscillations, emerging under sustained stimulation of the system, depends on the interplay between the IκB kinase (IKK) stimulation and the inhibitory action of RKIP. The authors found a mathematical relation that defines isoclines in IKK and RKIP levels for which the properties of oscillations are conserved and changes in the stimulation can be compensated by modulating RKIP inhibition. On the other hand, the shifting from the current isocline provokes modulation in either the amplitude (for stronger stimulation) or the frequency (for weaker stimulation).

References

    1. 1)
      • O. Wolkenhauer . Defining systems biology: an engineering perspective. IET Syst. Biol. , 4 , 1 - 4
    2. 2)
      • B.N. Kholodenko . Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol , 3 , 165 - 176
    3. 3)
      • D. Hanahan , R.A. Weinberg . The hallmarks of cancer. Cell , 57 - 70
    4. 4)
      • H. Kitano . Cancer as a robust system: implications for anticancer therapy. Nat. Rev. Cancer , 227 - 235
    5. 5)
      • O. Wolkenhauer , M. Ullah , P. Wellstead , K. Cho . The dynamic systems approach to control and regulation of intracellular networks. FEBS Lett , 1846 - 1853
    6. 6)
      • S. Nikolov , E. Yankulova , O. Wolkenhauer , V. Petrov . Principal difference between stability and structural stability (robustness) used in systems biology. Nonlinear Dyn. Psychol. Life Sci. , 4 , 413 - 433
    7. 7)
      • A. Friedman , N. Perrimon . Genetic screening for signal transduction in the era of network biology. Cell , 2 , 225 - 231
    8. 8)
      • E.C. Butcher , E.L. Berg , E.J. Kunkel . Systems biology in drug discovery. Nature Biotechnol. , 1253 - 1259
    9. 9)
      • L. Hood , R.M. Perlmutter . The impact of systems approaches on biological problems in drug discovery. Nature Biotechnol. , 1215 - 1217
    10. 10)
      • J.D. Jordan , E.M. Landau , R. Iyengar . Signaling networks: the origins of cellular multitasking. Cell , 2 , 193 - 200
    11. 11)
      • J.E. Ferrell . Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. , 140 - 148
    12. 12)
      • H. Kitano . Biological robustness. Nat. Rev. Genet. , 826 - 837
    13. 13)
      • A. Goldbeter , D. Gonze , G. Houart , J. Leloup , J. Halloy , G. Dupont . From simple to complex oscillatory behaviour in metabolic and genetic control networks. Chaos , 1 , 247 - 260
    14. 14)
      • L. Shilnikov , A. Shilnikov , D. Turaev , L. Chua . (2001) Methods of qualitative theory in nonlinear dynamics, Part II.
    15. 15)
      • S. Nikolov , J. Vera , V. Kotev , O. Wolkenhauer , V. Petrov . Dynamic properties of a delayed protein cross talk model. Biosystems , 1 , 51 - 68
    16. 16)
      • J. Marsden , M. McCracken . (1976) The Hopf bifurcation and its applications.
    17. 17)
      • S. Nikolov , V. Kotev , E. Yankulova . Bifurcation and dynamical behavior of a mathematical model of HIV infection. J. Theor. Appl. Mech. , 2 , 101 - 116
    18. 18)
      • S. Nikolov , J. Vera , O. Wolkenhauer , E. Yankulova , V. Petrov . Chaos in a delayed protein cross talk model with periodic forcing. C. R. Acad. Bulg. Sci. , 2 , 127 - 132
    19. 19)
      • S. Nikolov , V. Petrov . Time delay model of RNA silencing. J. Mech. Med. Biol. , 3 , 297 - 314
    20. 20)
      • S. Nikolov , S. Stoytchev , A. Torres , J.J. Nieto . Biomathematical modeling and analysis of blood flow in an intracranial aneurysm. Neurol. Res. , 497 - 504
    21. 21)
      • V. Petrov , M. Peifer , J. Timmer . Bistability and self-oscillations in cell cycle control. Int. J. Bifurcation Chaos , 4 , 1057 - 1067
    22. 22)
      • M. Karin , F.R. Greten . NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. , 749 - 759
    23. 23)
      • S. Hagan , F. Al-Mulla , E. Mallon . Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Res. , 7392 - 7397
    24. 24)
      • K.C. Yeung , D.W. Rose , A.S. Dhillon . Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol. Cell Biol. , 7207 - 7217
    25. 25)
      • A. Hoffmann , A. Levchenko , M. Scott , D. Baltimore . The IκB-NF-κB signalling module: temporal control and selective gene activation. Science , 1241 - 1245
    26. 26)
      • K. Cho , S. Shin , H. Lee , O. Wolkenhauer . Investigations into the analysis and modelling of the TNFα mediated NF-κB signalling pathway. Genome Res. , 2413 - 2422
    27. 27)
      • T. Lipniacki , P. Pastek , A. Brasier , B. Luxon , M. Kimmel . Mathematical model of NF-κB regulatory module. J. Theor. Biol. , 195 - 215
    28. 28)
      • D. Nelson , A. Ihekwaba , M. Elliott . Oscillations in NF-κB signalling control the dynamics of gene expression. Science , 704 - 708
    29. 29)
      • S.L. Werner , D. Barken , A. Hoffmann . Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science , 5742 , 1857 - 1861
    30. 30)
      • S. Krishna , M. Jensen , K. Sneppen . Minimal model of spiky oscillations in NF-κB signalling. PNAS , 29 , 10840 - 10845
    31. 31)
      • H. Yue , M. Brown , J. Knowles , H. Wang , D.S. Broomhead , D.B. Kell . Insights into the behaviour of systems biology models from dynamic sensitivity and identifiability analysis: a case study of an NF-kappaB signalling pathway. Mol. Biosyst , 12 , 640 - 649
    32. 32)
      • J. Joo , S. Plimpton , S. Martin , L. Swiler , J.L. Faulon . Sensitivity analysis of a computational model of the IKK NF-kappaB IkappaBalpha A20 signal transduction network. Ann N Y Acad Sci. , 221 - 239
    33. 33)
      • A. Goldbeter . Computational approaches to cellular rhythms. Nature , 238 - 245
    34. 34)
      • J. Vera , E. Balsa-Canto , P. Wellstead , J.R. Banga , O. Wolkenhauer . Power-law models of signal transduction pathways. Cell. Signal. , 1531 - 1541
    35. 35)
      • J. Vera , J. Bachmann , A.C. Pfeifer . A systems biology approach to analyse amplification in the JAK2-STAT5 signalling pathway. BMC Syst. Biol.
    36. 36)
      • A. Andronov , A. Witt , S. Chaikin . (1966) Theory of oscillations.
    37. 37)
      • S. Dano , P. Sorensen , F. Hynne . Sustained oscillations in living cells. Nature , 320 - 322
    38. 38)
      • A. Goldbeter . Biological rhythms as temporal dissipative structures. Adv. Chem. Phys. , 253 - 295
    39. 39)
      • N. Bautin . (1984) Behavior of dynamical systems near the boundary of stability.
    40. 40)
      • S. Nikolov , V. Petrov . New results about route to chaos in Rossler system. Int. J. Bifurcation Chaos , 1 , 293 - 308
    41. 41)
      • S. Nikolov . First Lyapunov value and bifurcation behavior of specific class of three-dimensional systems. Int. J. Bifurcation Chaos , 8 , 2811 - 2823
    42. 42)
      • M. Broemer , D. Krappmann , C. Scheidereit . Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation. Oncogene , 5378 - 5386
    43. 43)
      • C. Fraser . Exploring the positive and negative consequences of NF-κB inhibition for the treatment of human disease. Cell Cycle , 11 , 1160 - 1163
    44. 44)
      • K. Yeung , T. Seitz , S. Li . Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature , 173 - 177
    45. 45)
      • E.M. Eves , P. Shapiro , K. Naik , U.R. Klein , N. Trakul , M.R. Rosner . Raf kinase inhibitory protein regulates aurora B kinase and the spindle checkpoint. Mol. Cell , 561 - 574
    46. 46)
      • MATLAB: The MathWorks Inc., Natick, MA, USA, 2007, http://www.mathworks.com.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2008.0105
Loading

Related content

content/journals/10.1049/iet-syb.2008.0105
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address