http://iet.metastore.ingenta.com
1887

Synchronisation mechanisms of circadian rhythms in the suprachiasmatic nucleus

Synchronisation mechanisms of circadian rhythms in the suprachiasmatic nucleus

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is considered as the master circadian pacemaker. Each cell in the SCN contains an autonomous molecular clock, and the SCN is composed of multiple single-cell circadian oscillators. The fundamental question is how the individual cellular oscillators, expressing a wide range of periods, interact and assemble to create an integrated pacemaker that can govern behavioural and physiological rhythmicity and be reset by environmental light. The key is that the heterogeneous network formed by the cellular clocks within the SCN must synchronise to maintain timekeeping activity. To study the synchronisation mechanisms and the circadian rhythm generation, we propose a model based on the structural and functional heterogeneity of the SCN. The model is a heterogeneous network of circadian oscillators in which individual oscillators are self-sustained. The authors show that the dorsomedial region can smooth the periodic light–dark (LD) signal curve and affect its wave form. The authors also study the rhythmic process of the circadian oscillators under the effect of the daily LD cycle, including three courses: information afferent inputs, oscillation and information efferent outputs. The numerical simulations are also given to demonstrate the theoretical results.

References

    1. 1)
      • S. Reppert , D. Weaver . Coordination of circadian timing in mammals. Nature , 935 - 941
    2. 2)
      • R. Moore , J. Speh , R. Leak . Suprachiasmatic nucleus organization. Cell Tissue Res. , 89 - 98
    3. 3)
      • D. Welsh , D. Logothetis , M. Meister , S. Reppert . Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron , 697 - 706
    4. 4)
      • S. Honma , W. Nakamura , T. Shirakawa , K. Honma . Diversity in the circadian periods of single neurons of the rat suprachiasmatic nucleus on nuclear structure and intrinsic period. Neurosci. Lett. , 173 - 176
    5. 5)
      • S. Reppert , D. Weaver . Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. , 647 - 676
    6. 6)
      • T. Shirakawa , S. Honma , Y. Katsuno , H. Oguchi , K. Honma . Multiple oscillators in the suprachiasmatic nucleus. Chronobiol. Int. , 371 - 387
    7. 7)
      • M. Hastings , E. Herzog . Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J. Biol. Rhythms , 400 - 413
    8. 8)
      • R. Moore . Entrainment pathways and the functional organization of the circadian system. Prog. Brain Res. , 103 - 119
    9. 9)
      • T. Kalamatianos , I. Kallo , H. Piggins , C. Coen . Expression of VIP and/or PACAP receptor mRNA in peptide synthesizing cells within the suprachiasmatic nucleus of the rat and in its efferent target sites. J. Comp. Neurol. , 19 - 35
    10. 10)
      • J. Meijer , W. Schwartz . In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J. Biol. Rhy. , 235 - 249
    11. 11)
      • L. Morin , C. Allen . The circadian visual system, 2005. Brain Res. Rev. , 1 - 60
    12. 12)
      • L. Shearman , M. Zylka , D. Weaver , L. Kolakowski , S. Reppert . Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron , 1261 - 1269
    13. 13)
      • Y. Shigeyoshi , K. Taguchi , S. Yamamoto . Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell , 1043 - 1053
    14. 14)
      • U. Albrecht , Z. Sun , G. Eichele , C. Lee . A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell , 1055 - 1064
    15. 15)
      • D. Cutler , M. Haraura , H. Reed . The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro. Eur. J. Neurosci. , 197 - 204
    16. 16)
      • S. Aton , C. Colwell , A. Harmar , J. Waschek , E. Herzog . Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. , 476 - 483
    17. 17)
      • A. Harmar , H. Marston , S. Shen . The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell , 497 - 508
    18. 18)
      • V. King , S. Chahad-Ehlers , S. Shen , A. Harmar , E. Maywood , M. Hastings . A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleus. Eur. J. Neurosci. , 822 - 832
    19. 19)
      • E. Maywood , A. Reddy , G. Wong . Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr. Bio. , 599 - 605
    20. 20)
      • C. Ingram , R. Ciobanu , I. Coculescu , R. Tanasescu , M. Coculescu , R. Mihai . Vasopressin neurotransmission and the control of circadian rhythms in the suprachiasmatic nucleus. Prog. Brain Res. , 351 - 364
    21. 21)
      • R. Mihai , T. Juss , C. Ingram . Suppression of suprachiasmatic nucleus neuron activity with a vasopressin receptor antagonist: possible role for endogenous vasopressin in circadian activity cycles in vitro. Neurosci. Lett. , 95 - 99
    22. 22)
      • R. Mihai , M. Coculescu , J. Wakerley , C. Ingram . The effects of [Arg8] vasopressin and [Arg8] vasotocin on the firing rate of suprachiasmatic neurons in vitro. Neuroscience , 783 - 792
    23. 23)
      • A. Eskin . Circadian system of the Aplysia eye: properties of the pacemaker and mechanisms of its entrainment. Fed Proc. , 2573 - 9
    24. 24)
      • G. He , S. Sun . Structure and role of suprachiasmatic nucleus in the circadian rhythem. Process Anat. Sci. , 97 - 101
    25. 25)
      • M. Antle , D. Foley , N. Foley , R. Silver . Gates and oscillators: a network model of the brain clock. J. Bio. Rhy. , 339 - 350
    26. 26)
      • W. Bush , H. Siegelman . Circadian synchrony in networks of protein rhythm driven neurons. Complexity , 67 - 72
    27. 27)
      • J. Rougemont , F. Naef . Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies. Phy. Rev. E
    28. 28)
      • M. Antle , N. Foley , D. Foley , R. Silver . Gates and oscillators II: zeitgebers and the network model of the brain clock. J. Bio. Rhy. , 14 - 25
    29. 29)
      • P. Indic , W. Schwartz , E. Herzog , N. Foley , M. Antle . Modeling the behavior of coupled cellular circadian oscillators in the suprachiasmatic nucleus. J. Bio. Rhy. , 211 - 219
    30. 30)
      • T. Leise , H. Siegelmann . Dynamics of a multistage circadian system. J. Bio. Rhy. , 314 - 323
    31. 31)
      • T. To , M. Henson , E. Herzog , F. Doyle . A molecular model for intercellular synchronization in the mammalian circadian clock. Biophys. J. , 3792 - 3803
    32. 32)
      • J. Rougemont , F. Naef . Dynamical signatures of cellular fluctuations and oscillator stability in peripheral circadian clocks. Molecular Sys. Bio.
    33. 33)
      • M. Antle , R. Silver . Orchestrating time: arrangements the brain circadian clock. Trends Neurosci. , 145 - 151
    34. 34)
      • Boyd, S., Ghaoui, L., Feron, E., Balakrishnan, V.: `Linear matrix inequalities in system and control theory', SIAM, 1994, Philadelphia, PA.
    35. 35)
      • E. Abrahamson , R. Moore . Suprachiasmatic nucleus in the mouse:retinal innervation, intrinsic organization and efferent projections. Brain Res. , 172 - 191
    36. 36)
      • B. Goodwin . Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. , 524 - 438
    37. 37)
      • T. Shirakawa , S. Honma , Y. Katsuno , H. Oguchi , K. Honma . Multiple oscillators in the suprachiasmatic nucleus. Chronobiol. Int. , 371 - C387
    38. 38)
      • D. Gonze , S. Bernard , C. Waltermann , A. Kramer , H. Herzel . Spontaneous synchronization of coupled circadian oscillators. Biophys. J. , 120 - 129
    39. 39)
      • Y. Li , J. Zhang , Z. Liu . Circadian oscillators and phase synchronization under a light-dark cycle. Int. J. Nonlinear Sci. , 131 - 138
    40. 40)
      • M. Vidyasagar . (2002) Nonlinear systems analysis.
    41. 41)
      • C. Li , L. Chen , K. Aihara . Synchronization of coupled nonidentical genetic oscillators. Phys. Bio. , 37 - 44
    42. 42)
      • R. Wang , C. Li , L. Chen , K. Aihara . Modeling and Analyzing Biological Oscillations in Molecular Networks. Proc. IEEE , 1361 - 1385
    43. 43)
      • J. Zhang , Z. Liu , J. Xu . Synchronization in oscillator networks with coupling balance. Chaos, Solit and Fract.
    44. 44)
      • C. Liu , S. Reppert . GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron , 123 - 128
    45. 45)
      • S. Yamaguchi , H. Isejima , T. Matsuo . Synchronization of cellular clocks in the suprachiasmatic nucleus. Science , 1408 - 1412
    46. 46)
      • X. Zhang . (2004) Matrix Analysis and Applications.
    47. 47)
      • X. Li , G. Chen . Synchronization and desynchronization of complex dynamical networks: An engineering viewpoint. IEEE Trans Circuits Syst I , 1381 - 1390
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2007.0057
Loading

Related content

content/journals/10.1049/iet-syb.2007.0057
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address