http://iet.metastore.ingenta.com
1887

Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit

Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Complex regulatory dynamics is ubiquitous in molecular networks composed of genes and proteins. Recent progress in computational biology and its application to molecular data generate a growing number of complex networks. Yet, it has been difficult to understand the governing principles of these networks beyond graphical analysis or extensive numerical simulations. Here the authors exploit several simplifying biological circumstances which thereby enable to directly detect the underlying dynamical regularities driving periodic oscillations in a dynamical nonlinear computational model of a protein–protein network. System analysis is performed using the cell cycle, a mathematically well-described complex regulatory circuit driven by external signals. By introducing an explicit time delay and using a ‘tearing-and-zooming’ approach the authors reduce the system to a piecewise linear system with two variables that capture the dynamics of this complex network. A key step in the analysis is the identification of functional subsystems by identifying the relations between state-variables within the model. These functional subsystems are referred to as dynamical modules operating as sensitive switches in the original complex model. By using reduced mathematical representations of the subsystems the authors derive explicit conditions on how the cell cycle dynamics depends on system parameters, and can, for the first time, analyse and prove global conditions for system stability. The approach which includes utilising biological simplifying conditions, identification of dynamical modules and mathematical reduction of the model complexity may be applicable to other well-characterised biological regulatory circuits. [Includes supplementary material]

References

    1. 1)
      • A.L. Barabasi , Z.N. Oltvai . Network biology: understanding the cell's functional organization. Nat. Rev. Genet. , 101 - 113
    2. 2)
      • C. Giallourakis , C. Henson , M. Reich , X. Xie , V.K. Mootha . Disease gene discovery through integrative genomics. Annu. Rev. Genomics Hum. Genet. , 381 - 406
    3. 3)
      • K. Tan , J. Tegnér , T. Ravasi . Integrated approaches to uncovering transcription regulatory networks in mammalian cells. Genomics , 3 , 219 - 231
    4. 4)
      • J. Tegnér , J. Björkegren . Perturbations to uncover gene networks. Trends. Genet. , 34 - 41
    5. 5)
      • J.-C. Leloup , A. Goldbeter . A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J. Biol. Rhythms , 70 - 87
    6. 6)
      • G. von Dassov , E. Meir , E.M. Munro , M.O. Odell . The segment polarity network is a robust developmental module. Nature , 188 - 192
    7. 7)
      • B.B. Aldridge , J.M. Burke , D.A. Lauffenburger , P.K. Sorger . Physicochemical modelling of cell signalling pathways. Nat. Cell. Biol. , 1195 - 1203
    8. 8)
      • J.A. Papin , T. Hunter , B.O. Palsson , S. Subramaniam . Reconstruction of cellular signalling networks and analysis of their properties. Nat. Rev. Mol. Cell. Biol. , 99 - 111
    9. 9)
      • T.S. Gardner , C.R. Cantor , J.J. Collins . Construction of a genetic toggle switch in Escherichia coli.. Nature , 339 - 342
    10. 10)
      • M.B. Elowitz , S. Leibler . A synthetic oscillatory network of transcriptional regulators. Nature , 335 - 338
    11. 11)
      • A. Ma'ayan , R.D. Blitzer , R. Iyengar . Toward predictive models of mammalian cells. Annu. Rev. Biophys. Biomol. Struct. , 319 - 349
    12. 12)
      • S.H. Strogatz . Exploring complex networks. Nature , 268 - 276
    13. 13)
      • L.H. Hartwell , J.J. Hopfield , S. Leibler , A.W. Murray . From molecular to modular cell biology. Nature , c47 - c52
    14. 14)
      • J.J. Tyson , J.C. Chen , B. Novak . Sniffers, buffers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell. Biol. , 221 - 231
    15. 15)
      • R. Albert , H.G. Othmer . The topology of the regulatory interactions predicts the expression pattern of the drosophila segment polarity genes. J. Theor. Biol. , 1 - 18
    16. 16)
      • A. Eldar , R. Dorfman , D. Weiss , H. Ashe , B. Shilo , N. Barkai . Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature , 304 - 308
    17. 17)
      • D. Angeli , J.E. Ferrell , E.D. Sontag . Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA , 1822 - 1827
    18. 18)
      • A. Lovrics , A. Csikász–Nagy , I. Zsély , J. Zádor , T. Turányi , B. Novák . Time scale and dimension analysis of a budding yeast cell cycle model. BMC Bioinformatics , 494 - 505
    19. 19)
      • H. Schmidt , E.W. Jacobsen . Linear systems approach to analysis of complex dynamic behaviours in biochemical networks. IEE Syst. Biol. , 149 - 158
    20. 20)
      • N.A.M. Monk . Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Curr. Biol. , 1409 - 1413
    21. 21)
      • J. Lewis . Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogeneses oscillator. Curr. Biol. , 1398 - 1408
    22. 22)
      • D. Bratsun , D. Volfson , L.S. Tsimring , J. Hasty . Delay induced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. USA , 14593 - 14598
    23. 23)
      • B. Novak , Z. Pataki , A. Ciliberto , J.J. Tyson . Mathematical model of the cell division cycle of fission yeast. Chaos , 277 - 286
    24. 24)
      • J.J. Tyson , A.K. Chen , B. Novak . Network dynamics and cell physiology. Nat. Rev. Mol. Cell. Biol. , 908 - 916
    25. 25)
      • O. Eriksson , Y. Zhou , J. Tegner . Modeling complex cellular networks – robust switching in the cell cycle ensures a piecewise linear reduction of the regulatory network. CDC 2004: IEEE Conf. Decision and Control , 117 - 123
    26. 26)
      • L. Glass , S.A. Kauffman . The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. , 103 - 129
    27. 27)
      • L. Glass . Classification of biological networks by their qualitative dynamics. J. Theor. Biol. , 85 - 107
    28. 28)
      • E.J. Doedel . AUTO, a program for the automatic bifurcation analysis of autonomous systems. Congr. Numer. , 265 - 384
    29. 29)
      • H. Schmidt , M. Jirstrand . Systems biology toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics , 514 - 515
    30. 30)
      • B. Ermentrout . (2002) Simulating, analyzing and animating dynamical systems: a guide to XPPAUT for researchers and students.
    31. 31)
      • J.J. Tyson , A. Csikasz–Nagy , B. Novak . The dynamics of cell cycle regulation. BioEssays , 1095 - 1109
    32. 32)
      • A. Sveiczer , A. Csikasz–Nagy , B. Gyorffy , J. Tyson , B. Novak . Modeling the fission yeast cell cycle: quantized cycle times in wee1–cdc25Δ mutant cells. Proc. Natl. Acad. Sci. USA , 7865 - 7870
    33. 33)
      • J. Srividhya , M.S. Gopinathan . A simple time delay model for eukaryotic cell cycle. J. Theor. Biol. , 617 - 627
    34. 34)
      • L.A. Farrow , D. Edelson . The steady-state approximation: fact or fiction?. Int. J. Chem. Kinet. , 787 - 800
    35. 35)
      • L.A. Segel . On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. , 579 - 593
    36. 36)
      • E.H. Flach , S. Schnell . Use and abuse of the quasi-steady-state approximation. Syst. Biol. (Stevenage) , 187 - 191
    37. 37)
      • H. De Jong , J. Gouzé , C. Hernandez , M. Page , T. Sari , J. Geiselmann . Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. , 301 - 340
    38. 38)
      • E. Plahte , T. Mestl , S.W. Omholt . A methodological basis for description and analysis of systems with complex switch-like interactions. J. Math. Biol. , 321 - 348
    39. 39)
      • A. Goldbeter , D.J. Koshland . An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA , 6840 - 6844
    40. 40)
      • C.Y. Huang , J.E.J. Ferrell . Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA , 10078 - 10083
    41. 41)
      • J.W. Harper . A phosphorylation-driven ubiquitination switch for cell-cycle control. Trends Cell Biol. , 104 - 107
    42. 42)
      • D.G. Hardie , I.P. Salt , S.A. Hawley , S.P. Davies . A MP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochem. J. , 717 - 722
    43. 43)
      • C.P. Bagowski , J. Besser , C.R. Frey , J.E.J. Ferrell . The JNK cascade as a biochemical switch in mammalian cells: ultrasensitive and all-or-none responses. Curr. Biol. , 315 - 320
    44. 44)
      • J.E.J. Ferrell . Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem. Sci. , 460 - 466
    45. 45)
      • J. Rinzel . Excitation dynamics: insights from simplified membrane models. Fed. Proc. , 2944 - 2946
    46. 46)
      • N. Kopell . Networks of neurons as dynamical systems: from geometry to biophysics. Q. Appl. Math. , 707 - 718
    47. 47)
      • N. Brunel . Persistent activity and the single cell f-I curve in a cortical network model. Network , 261 - 280
    48. 48)
      • L. Glass . Synchronization and rhythmic processes in physiology. Nature , 277 - 284
    49. 49)
      • M.C. Mackey , L. Glass . Oscillation and chaos in physiological control systems. Science , 287 - 289
    50. 50)
      • M. Davidich , S. Bornholdt . The transition from different equations to Boolean networks: a case study in simplifying a regulatory network model. J. Theor. Biol. , 3 , 269 - 277
    51. 51)
      • S. Danø , M. Madsen , H. Schmidt , G. Cedersund . Reduction of a biochemical model with preservation of its basic dynamic properties. FEBS J. , 4862 - 4877
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2007.0028
Loading

Related content

content/journals/10.1049/iet-syb.2007.0028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address