Review of results on smart-meter privacy by data manipulation, demand shaping, and load scheduling
- Author(s): Farhad Farokhi 1
-
-
View affiliations
-
Affiliations:
1:
Department of Electrical and Electronic Engineering , The University of Melbourne , Parkville, VIC 3010 , Australia
-
Affiliations:
1:
Department of Electrical and Electronic Engineering , The University of Melbourne , Parkville, VIC 3010 , Australia
- Source:
Volume 3, Issue 5,
October
2020,
p.
605 – 613
DOI: 10.1049/iet-stg.2020.0129 , Online ISSN 2515-2947
Simple analysis of energy consumption patterns recorded by smart meters can be used to deduce household occupancy. With access to higher-resolution smart-meter readings, we can infer more detailed information about the household including the use of individual electric appliances through non-intrusive load monitoring techniques. The extent of privacy concerns caused by smart meters has proved to an obstacle in the roll-out of smart meters in some countries. This highlights the need for investigating smart-meter privacy. Mechanisms for ensuring smart-meter privacy fall in broad categories of data manipulation, demand shaping, and load scheduling. In smart-meter data manipulation, the smart meter collects real, potentially high-resolution data about the energy consumption within the house. This data is then manipulated before communication with to utility providers and retailers. The manipulation could be non-stochastic, such as aggregation, binning, and down-sampling, or stochastic, such as additive noise. In demand shaping and load scheduling, smart-meter readings are communicated without any interference but the consumption is manipulated by renewable energy sources, batteries, or shifting loads to render non-intrusive load monitoring ineffective. In this study, the author reviews these approaches and presents several methods relying on homomorphic encryption, differential privacy, information theory, and statistics for ensuring privacy.
Inspec keywords: smart meters; data privacy; domestic appliances; power engineering computing; smart power grids; energy consumption; renewable energy sources
Other keywords: metering consumption; smart-meter privacy fall; smart-meter data manipulation; smart grid; demand shaping; load scheduling; higher-resolution smart-meter readings; smart meter
Subjects: Data security; Power system measurement and metering; Power engineering computing; Power system management, operation and economics
References
-
-
1)
-
104. Farokhi, F.: ‘A fundamental bound on performance of non-intrusive load monitoring algorithms with application to smart-meter privacy’, 2020 IFAC World Congress, Berlin, Germany, 2020.
-
-
2)
-
75. Machanavajjhala, A., Gehrke, J., Kifer, D., et al: ‘ℓ-diversity: privacy beyond k-anonymity’. 22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, USA, 2006, pp. 24–24.
-
-
3)
-
19. Hart, G.W.: ‘Nonintrusive appliance load monitoring’, Proc. IEEE, 1992, 80, (12), pp. 1870–1891.
-
-
4)
-
124. Tanaka, T., Skoglund, M., Sandberg, H., et al: ‘Directed information and privacy loss in cloud-based control’. 2017 American Control Conf. (ACC), Seattle, WA, USA, 2017, pp. 1666–1672.
-
-
5)
-
1. Samarakoon, K., Ekanayake, J., Jenkins, N.: ‘Investigation of domestic load control to provide primary frequency response using smart meters’, IEEE Trans. Smart Grid, 2011, 3, (1), pp. 282–292.
-
-
6)
-
129. Wang, W., Ying, L., Zhang, J.: ‘On the relation between identifiability, differential privacy, and mutual-information privacy’, IEEE Trans. Inf. Theory, 2016, 62, (9), pp. 5018–5029.
-
-
7)
-
9. Motlagh, O., Berry, A., O'Neil, L.: ‘Clustering of residential electricity customers using load time series’, Appl. Energy, 2019, 237, pp. 11–24.
-
-
8)
-
16. UMass Trace Repository: ‘Smart* data set for sustainability'. Available at: http://traces.cs.umass.edu/index.php/Smart/Smart. Last Accessed: May 6, 2020.
-
-
9)
-
73. Samarati, P., Sweeney, L.: ‘Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression’.tech. rep., Harvard Data Privacy Lab, 1998.
-
-
10)
-
83. Dwork, C., McSherry, F., Nissim, K., et al: ‘Calibrating noise to sensitivity in private data analysis’. Theory of Cryptography Conf., 2006, pp. 265–284.
-
-
11)
-
90. Giaconi, G., Gündüz, D., Poor, H.V.: ‘Smart meter privacy with renewable energy and an energy storage device’, IEEE Trans. Inf. Forensics Sec., 2017, 13, (1), pp. 129–142.
-
-
12)
-
99. Sun, Y., Lampe, L., Wong, V.W.: ‘Smart meter privacy: exploiting the potential of household energy storage units’, IEEE Internet Things J., 2017, 5, (1), pp. 69–78.
-
-
13)
-
107. Tan, O., Gündüz, D., Vilardebó, J.G.: ‘Optimal privacy-cost trade-off in demand-side management with storage’, 2015 IEEE 16th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden, 2015, pp. 370–374.
-
-
14)
-
151. Rastogi, V., Nath, S.: ‘Differentially private aggregation of distributed time-series with transformation and encryption’. Proc. of the 2010 ACM SIGMOD Int. Conf. on Management of data, Indianapolis, IN, USA, 2010, pp. 735–746.
-
-
15)
-
17. Giaconi, G., Gunduz, D., Poor, H.V.: ‘Privacy-aware smart metering: progress and challenges’, IEEE Signal Process. Mag., 2018, 35, (6), pp. 59–78.
-
-
16)
-
134. Farokhi, F., Sandberg, H.: ‘Ensuring privacy with constrained additive noise by minimizing fisher information’, Automatica, 2019, 99, pp. 275–288.
-
-
17)
-
89. Farokhi, F., Sandberg, H.: ‘Fisher information as a measure of privacy: preserving privacy of households with smart meters using batteries’, IEEE Trans. Smart Grid, 2017, 9, (5), pp. 4726–4734.
-
-
18)
-
79. Shannon, C.: ‘The zero error capacity of a noisy channel’, IRE Trans. Inf. Theory, 1956, 2, (3), pp. 8–19.
-
-
19)
-
81. Issa, I., Wagner, A.B., Kamath, S.: ‘An operational approach to information leakage’, IEEE Trans. Inf. Theory, 2020, 66, (3), pp. 1625–1657.
-
-
20)
-
22. Suzuki, K., Inagaki, S., Suzuki, T., et al: ‘Nonintrusive appliance load monitoring based on integer programming’. 2008 SICE Annual Conf., 2008, pp. 2742–2747.
-
-
21)
-
114. du Pin Calmon, F., Fawaz, N.: ‘Privacy against statistical inference’. 2012 50th Annual Allerton Conf. on Communication, Control, and Computing (Allerton), Allerton, IL, USA, 2012, pp. 1401–1408.
-
-
22)
-
82. Dwork, C., Roth, A.: ‘The algorithmic foundations of differential privacy’, Found. Trends Theor. Comput. Sci., 2014, 9, (3-4), pp. 211–407.
-
-
23)
-
46. Beaumont, G.P.: ‘Probability and random variables. Ellis horwood series in mathematics and its applications: statistics and operational Research' (Elsevier Science, UK, 2005).
-
-
24)
-
147. Chan, T.-H.H., Shi, E., Song, D.: ‘Private and continual release of statistics’, ACM Trans. Inf. Syst. Secur. (TISSEC), 2011, 14, (3), p. 26.
-
-
25)
-
118. Kim, Y., Ngai, E.C.-H., Srivastava, M.B.: ‘Cooperative state estimation for preserving privacy of user behaviors in smart grid’. 2011 IEEE Int. Conf. on Smart Grid Communications (SmartGridComm), Brussels, Belgium, 2011, pp. 178–183.
-
-
26)
-
141. Zhang, Z., Cao, W., Qin, Z., et al: ‘When privacy meets economics: enabling differentially-private battery-supported meter reporting in smart grid’. 2017 IEEE/ACM 25th Int. Symp. on Quality of Service (IWQoS), 2017, pp. 1–9.
-
-
27)
-
55. Gentry, C.: ‘Fully homomorphic encryption using ideal lattices’. Proc. of the Forty-first Annual ACM Symp. on Theory of Computing, STOC ‘09, New York, NY, USA, 2009, pp. 169–178.
-
-
28)
-
4. Faruqui, A., Sergici, S., Sharif, A.: ‘The impact of informational feedback on energy consumption–a survey of the experimental evidence’, Energy, 2010, 35, (4), pp. 1598–1608.
-
-
29)
-
143. Gomez-Vilardebo, J., Gündüz, D.: ‘Smart meter privacy for multiple users in the presence of an alternative energy source’, IEEE Trans. Inf. Forensics Sec., 2014, 10, (1), pp. 132–141.
-
-
30)
-
49. Energy Networks Association: ‘Smart meter aggregation assessment final report'. 2015. Available at: https://www.energynetworks.org/assets/files/electricity/futures/smart_meters/FINAL%20REPORTS%20from%20consultants/Smart%20Meter%20Aggregation%20Assessment%20Final%20Report_V1.5.pdf2.
-
-
31)
-
70. Lindell, Y., Pinkas, B.: ‘An efficient protocol for secure two-party computation in the presence of malicious adversaries’. Annual Int. Conf. on the Theory and Applications of Cryptographic Techniques, Barcelona, Spain, 2007, pp. 52–78.
-
-
32)
-
20. Hosseini, S.S., Agbossou, K., Kelouwani, S., et al: ‘Non-intrusive load monitoring through home energy management systems: a comprehensive review’, Renew. Sust. Energy Rev., 2017, 79, pp. 1266–1274.
-
-
33)
-
6. Al-Wakeel, A., Wu, J., Jenkins, N.: ‘State estimation of medium voltage distribution networks using smart meter measurements’, Appl. Energy, 2016, 184, pp. 207–218.
-
-
34)
-
102. Pappachan, P., Degeling, M., Yus, R., et al: ‘Towards privacy-aware smart buildings: capturing, communicating, and enforcing privacy policies and preferences’. 2017 IEEE 37th Int. Conf. on Distributed Computing Systems Workshops (ICDCSW), 2017, pp. 193–198.
-
-
35)
-
34. Gupta, A., Garud, V., Rodney, U., et al: ‘Systems and methods for improving the accuracy of appliance level disaggregation in non-intrusive appliance load monitoring techniques’, US Patent 9,612,286, 2017.
-
-
36)
-
133. Shao, J.: ‘Mathematical statistics. Springer texts in Statistics' (Springer-Verlag, New York, 2003).
-
-
37)
-
146. Dwork, C., Naor, M., Pitassi, T., et al: ‘Differential privacy under continual observation’. Proc. of the 42nd ACM Symp. on Theory of Computing, Cambridge, MA, USA, 2010, pp. 715–724.
-
-
38)
-
40. Chalmers, C., Hurst, W., Mackay, M., et al: ‘Intelligent health monitoring using smart meters’, Arai, K., Kapoor, S., Bhatia, R. (eds.): ‘Intelligent Computing' (Springer International Publishing, Cham, 2019), pp. 1104–1113.
-
-
39)
-
115. Tan, O., Gunduz, D., Poor, H.V.: ‘Increasing smart meter privacy through energy harvesting and storage devices’, IEEE J. Sel. Areas Commun., 2013, 31, (7), pp. 1331–1341.
-
-
40)
-
145. Berger, T.: ‘Rate distortion theory: a mathematical basis for data compression. Prentice-Hall electrical engineering series' (Prentice-Hall, USA, 1971).
-
-
41)
-
91. Li, S., Khisti, A., Mahajan, A.: ‘Information-theoretic privacy for smart metering systems with a rechargeable battery’, IEEE Trans. Inf. Theory, 2018, 64, (5), pp. 3679–3695.
-
-
42)
-
113. Cuff, P., Yu, L.: ‘Differential privacy as a mutual information constraint’. Proc. of the 2016 ACM SIGSAC Conf. on Computer and Communications Security, Vienna, Austria, 2016, pp. 43–54.
-
-
43)
-
2. Alahakoon, D., Yu, X.: ‘Smart electricity meter data intelligence for future energy systems: A survey’, IEEE Trans. Ind. Inf., 2015, 12, (1), pp. 425–436.
-
-
44)
-
36. Haghighat-kashani, A., Cheam, J.T.-N., Hallam, J.M.: ‘System and method of compiling and organizing power consumption data and converting such data into one or more user actionable formats’, US Patent US20150012147A1, 2015.
-
-
45)
-
131. Farokhi, F., Ding, N.: ‘Measuring information leakage in non-stochastic bruteforce guessing’, arXiv preprint arXiv:2004.10911, 2020.
-
-
46)
-
69. Lindell, Y., Pinkas, B.: ‘A proof of security of yao's protocol for two-party computation’, J. Cryptol., 2009, 22, (2), pp. 161–188.
-
-
47)
-
142. Yao, J., Venkitasubramaniam, P.: ‘On the privacy-cost tradeoff of an inhome power storage mechanism’. 2013 51st Annual Allerton Conf. on Communication, Control, and Computing (Allerton), Allerton, IL, USA, 2013, pp. 115–122.
-
-
48)
-
92. Hossain, M.B., Natgunanathan, I., Xiang, Y., et al: ‘Enhanced smart meter privacy protection using rechargeable batteries’, IEEE Internet Things J., 2019, 6, (4), pp. 7079–7092.
-
-
49)
-
86. Farokhi, F.: ‘Discounted differential privacy: privacy of evolving datasets over an infinite horizon’. ACM/IEEE Int. Conf. on Cyber-Physical Systems (ICCPS), Sydney, Australia, 2020.
-
-
50)
-
57. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: ‘Fully homomorphic encryption without bootstrapping’, ACM Trans. Comput. Theory (TOCT), 2014, 6, (3), p. 13.
-
-
51)
-
39. Corner, S.: ‘The aussie company metering South KoreaâĂŹs water: freestyle technology highly commended in IoT awards'. IoT HUB, June 2018. Available at: https://www.iothub.com.au/news/the-aussie-company-metering-south-koreas-water-492482.
-
-
52)
-
149. Zhu, T., Li, G., Xiong, P., et al: ‘Answering differentially private queries for continual datasets release’, Future Gener. Comput. Syst., 2018, 87, pp. 816–827.
-
-
53)
-
48. Eibl, G., Engel, D.: ‘Influence of data granularity on smart meter privacy’, IEEE Trans. Smart Grid, 2014, 6, (2), pp. 930–939.
-
-
54)
-
35. Leeb, S.B., Kirtley, J.L.Jr: ‘Transient event detector for use in nonintrusive load monitoring systems’, US Patent 5,483,153, 1996.
-
-
55)
-
38. Plotwatt Inc. Available at: https://www.plotwatt.com. Last Accessed: 6 May 2020.
-
-
56)
-
12. Kleiminger, W., Beckel, C., Staake, T., et al: ‘Occupancy detection from electricity consumption data’. Proc. of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings (BuildSys 2013), Rome, Italy, 2013, pp. 1–8.
-
-
57)
-
62. Lu, R., Liang, X., Li, X., et al: ‘EPPA: an efficient and privacy-preserving aggregation scheme for secure smart grid communications’, IEEE Trans. Parallel Distrib. Syst., 2012, 23, (9), pp. 1621–1631.
-
-
58)
-
87. Farokhi, F.: ‘Differential privacy for evolving almost-periodic datasets with continual linear queries: application to energy data privacy’, arXiv preprint arXiv:1909.11812, 2019.
-
-
59)
-
128. Li, Z., Oechtering, T.J., Gündüz, D.: ‘Privacy against a hypothesis testing adversary’, IEEE Trans. Inf. Forensics Sec., 2018, 14, (6), pp. 1567–1581.
-
-
60)
-
125. Shateri, M., Messina, F., Piantanida, P., et al: ‘Deep directed information-based learning for privacy-preserving smart meter data release’. 2019 IEEE Int. Conf. on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, People's Republic of China, 2019, pp. 1–7.
-
-
61)
-
137. Acs, G., Castelluccia, C., Lecat, W.: ‘Protecting against physical resource monitoring’. Proc. of the 10th Annual ACM Workshop on Privacy in the Electronic Society, Chicago, IL, USA, 2011, pp. 23–32.
-
-
62)
-
24. Elhamifar, E., Sastry, S.: ‘Energy disaggregation via learning powerlets and sparse coding’. 29th AAAI Conf. on Artificial Intelligence, Austin, TX, USA, 2015.
-
-
63)
-
52. Rivest, R.L., Shamir, A., Adleman, L.: ‘A method for obtaining digital signatures and public-key cryptosystems’, Commun. ACM, 1978, 21, (2), pp. 120–126.
-
-
64)
-
103. Boyer, J.P., Tan, K., Gunter, C.A.: ‘Privacy sensitive location information systems in smart buildings’. Int. Conf. on Security in Pervasive Computing, York, UK, 2006, pp. 149–164.
-
-
65)
-
76. Technische Universität München and Berliner Institut für Gesundheitsforschung and Charité – Universitätsmedizin Berlin: ‘ARX – data anonymization tool: A comprehensive software for privacy-preserving microdata publishing'. Available at: https://arx.deidentifier.org. Last Accessed: 6 May 2020.
-
-
66)
-
41. Greveler, U., Glösekötterz, P., Justusy, B., et al: ‘Multimedia content identification through smart meter power usage profiles’. Proc. of the Int. Conf. on Information and Knowledge Engineering (IKE), Las Vegas, NV, USA, 2012.
-
-
67)
-
53. Elgamal, T.: ‘A public key cryptosystem and a signature scheme based on discrete logarithms’, IEEE Trans. Inf. Theory, 1985, 31, pp. 469–472.
-
-
68)
-
77. Ding, N., Farokhi, F.: ‘Developing non-stochastic privacy-preserving policies using agglomerative clustering’, IRE Trans. Inf. Forensics Sec., 2020, 15, pp. 3911–3923.
-
-
69)
-
120. Arnold, D.-M., Loeliger, H.-A., Vontobel, P.O., et al: ‘Simulation-based computation of information rates for channels with memory’, IEEE Trans. Inf. Theory, 2006, 52, (8), pp. 3498–3508.
-
-
70)
-
139. Zhao, J., Jung, T., Wang, Y., et al: ‘Achieving differential privacy of data disclosure in the smart grid’. IEEE INFOCOM 2014-IEEE Conf. on Computer Communications, Toronto, Canada, 2014, pp. 504–512.
-
-
71)
-
50. Buescher, N., Boukoros, S., Bauregger, S., et al: ‘Two is not enough: privacy assessment of aggregation schemes in smart metering’, Proc. Privacy Enhancing Technol., 2017, 2017, (4), pp. 198–214.
-
-
72)
-
85. Jelasity, M., Birman, K.P.: ‘Distributional differential privacy for large-scale smart metering’. Proc. of the 2nd ACM Workshop on Information Hiding and Multimedia Security, Salzburg, Austria, 2014, pp. 141–146.
-
-
73)
-
54. Paillier, P.: ‘Public-key cryptosystems based on composite degree residuosity classes’, Stern, J., ed.: ‘Advances in cryptology — EUROCRYPT ‘99' (Springer, Berlin Heidelberg, 1999), pp. 223–238.
-
-
74)
-
65. Chaum, D., Crépeau, C., Damgard, I.: ‘Multiparty unconditionally secure protocols’. Proc. of the Twentieth Annual ACM symp. on Theory of Computing, Chicago, IL, USA, 1988, pp. 11–19.
-
-
75)
-
122. Giaconi, G.: ‘Information-theoretic privacy in smart meters’. PhD Thesis, Imperial College London, 2018.
-
-
76)
-
88. Pixabay GmbH. Available at: https://pixabay.com/. Last Accessed: May 8, 2020.
-
-
77)
-
71. Kolesnikov, V., Schneider, T.: ‘Improved garbled circuit: free XOR gates and applications’, Int. Colloquium on Automata, Languages, and Programming, Reykjavik, Iceland, 2008, pp. 486–498.
-
-
78)
-
106. Yang, L., Chen, X., Zhang, J., et al: ‘Cost-effective and privacy-preserving energy management for smart meters’, IEEE Trans. Smart Grid, 2014, 6, (1), pp. 486–495.
-
-
79)
-
136. Farokhi, F.: ‘Privacy-preserving constrained quadratic optimization with fisher information’, IEEE Signal Process. Lett., 2020, 27, (4), pp. 545–549.
-
-
80)
-
97. Isikman, A.O., Altun, C., Uludag, S., et al: ‘Power scheduling in privacy enhanced microgrid networks with renewables and storage’. 2016 13th IEEE Annual Consumer Communications & Networking Conf. (CCNC), Las Vegas, NV, USA, 2016, pp. 405–410.
-
-
81)
-
18. Zoha, A., Gluhak, A., Imran, M.A., et al: ‘Non-intrusive load monitoring approaches for disaggregated energy sensing: a survey’, Sensors, 2012, 12, (12), pp. 16838–16866.
-
-
82)
-
59. Ács, G., Castelluccia, C.: ‘I have a DREAM! (DiffeRentially private smArt metering)’, Filler, T., Pevný, T., Craver, S., Ker, A., eds.: ‘Information hiding' (Springer, Berlin, Heidelberg, 2011), pp. 118–132.
-
-
83)
-
126. Salehkalaibar, S., Aminifar, F., Shahidehpour, M.: ‘Hypothesis testing for privacy of smart meters with side information’, IEEE Trans. Smart Grid, 2017, 10, (2), pp. 2059–2067.
-
-
84)
-
33. Zhang, C., Zhong, M., Wang, Z., et al: ‘Sequence-to-point learning with neural networks for non-intrusive load monitoring’. 32nd AAAI Conf. on Artificial Intelligence, New Orleans, LA, USA, 2018.
-
-
85)
-
144. Rajagopalan, S.R., Sankar, L., Mohajer, S., et al: ‘Smart meter privacy: a utility-privacy framework’. 2011 IEEE int. Conf. on smart grid communications (SmartGridComm), Brussels, Belgium, 2011, pp. 190–195.
-
-
86)
-
111. Yamamoto, H.: ‘A rate-distortion problem for a communication system with a secondary decoder to be hindered’, IEEE Trans. Inf. Theory, 1988, 34, (4), pp. 835–842.
-
-
87)
-
43. United States Court of Appeals, Seventh Circuit: ‘Naperville Smart Meter v. City of Naperville’, 2018. No. 16-3766.
-
-
88)
-
101. Alisic, R., Molinari, M., Paré, P.E., et al: ‘Bounding privacy leakage in smart buildings’, arXiv preprint arXiv:2003.13187, 2020.
-
-
89)
-
21. Makonin, S., Ellert, B., Bajić, I.V., et al: ‘Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014’, Sci. Data, 2016, 3, p. 160037.
-
-
90)
-
109. Cover, T.M., Thomas, J.A.: ‘Elements of information theory' (John Wiley & Sons, USA, 2012).
-
-
91)
-
47. Farokhi, F.: ‘Development and analysis of deterministic privacy-preserving policies using non-stochastic information theory’, IEEE Trans. Inf. Forensics Sec., 2019, 14, (10), pp. 2567–2576.
-
-
92)
-
27. Makonin, S., Popowich, F., Bajić, I.V., et al: ‘Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring’, IEEE Trans. Smart Grid, 2015, 7, (6), pp. 2575–2585.
-
-
93)
-
51. Rivest, R.L., Adleman, L., Dertouzos, M.L.: ‘On data banks and privacy homomorphisms’, Found. Secure Comput., 1978, 4, (11), pp. 169–180.
-
-
94)
-
32. Sirojan, T., Phung, B.T., Ambikairajah, E.: ‘Deep neural network based energy disaggregation’. 2018 IEEE Int. Conf. on Smart Energy Grid Engineering (SEGE), Oshawa, Canada, 2018, pp. 73–77.
-
-
95)
-
98. Farokhi, F., Sandberg, H.: ‘Fisher information privacy with application to smart meter privacy using HVAC units’, in Farokhi, F. (Ed.): ‘Privacy in dynamical Systems' (Springer Singapore, Singapore, 2020), pp. 3–17.
-
-
96)
-
108. Yang, L., Chen, X., Zhang, J., et al: ‘Optimal privacy-preserving energy management for smart meters’. IEEE INFOCOM 2014-IEEE Conf. on Computer Communications, Toronto, Canada, 2014, pp. 513–521.
-
-
97)
-
105. Tan, O., Gómez-Vilardebó, J., Gündüz, D.: ‘Privacy-cost trade-offs in demandside management with storage’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (6), pp. 1458–1469.
-
-
98)
-
135. Ziemann, I., Sandberg, H.: ‘Parameter privacy versus control performance: fisher information regularized control’. Proc. of the American Control Conf., Denver, CO, USA, 2020.
-
-
99)
-
42. Cuijpers, C., Koops, B.-J.: ‘Smart metering and privacy in Europe: lessons from the Dutch case’, in Gutwirth, S., Leenes, R., de Hert, P., et al (Eds.): European data protection: coming of age (Springer, Netherlands, 2013), pp. 269–293.
-
-
100)
-
44. Erdemir, E., Gündüz, D., Dragotti, P.L.: ‘Smart meter privacy’, Farokhi, F., ed.: ‘Privacy in dynamical systems, pp. 19–41 (Springer Singapore, Singapore, 2020).
-
-
101)
-
127. Li, Z., Oechtering, T.J., Gündüz, D.: ‘Smart meter privacy based on adversarial hypothesis testing’. 2017 IEEE Int. Symp. on Information Theory (ISIT), 2017, pp. 774–778.
-
-
102)
-
30. Zhao, B., Stankovic, L., Stankovic, V.: ‘On a training-less solution for nonintrusive appliance load monitoring using graph signal processing’, IEEE Access, 2016, 4, pp. 1784–1799.
-
-
103)
-
66. Kamm, L., Willemson, J.: ‘Secure floating point arithmetic and private satellite collision analysis’, Int. J. Inf. Secur., 2015, 14, (6), pp. 531–548.
-
-
104)
-
31. Kelly, J., Knottenbelt, W.: ‘Neural NILM: deep neural networks applied to energy disaggregation’. Proc. of the 2nd ACM Int. Conf. on Embedded Systems for Energy-Efficient Built Environments, Seoul, Republic of Korea, 2015, pp. 55–64.
-
-
105)
-
117. Natgunanathan, I., Hossain, M.B., Xiang, Y., et al: ‘Progressive average-based smart meter privacy enhancement using rechargeable batteries’, IEEE Internet Things J., 2019, 6, (6), pp. 9816–9828.
-
-
106)
-
94. Varodayan, D., Khisti, A.: ‘Smart meter privacy using a rechargeable battery: minimizing the rate of information leakage’. 2011 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011, pp. 1932–1935.
-
-
107)
-
13. Kleiminger, W., Beckel, C., Santini, S.: ‘Household occupancy monitoring using electricity meters’. Proc. of the 2015 ACM int. Joint Conf. on Pervasive and Ubiquitous Computing, Osaka, Japan, 2015, pp. 975–986.
-
-
108)
-
45. Nair, G.N.: ‘A nonstochastic information theory for communication and state estimation’, IEEE Trans. Autom. Control, 2013, 58, (6), pp. 1497–1510.
-
-
109)
-
112. Farokhi, F., Nair, G.: ‘Privacy-constrained communication’. Proc. of the 6th IFAC Workshop on Distributed Estimation and Control in Networked Systems, Tokyo, Japan, 2016.
-
-
110)
-
96. Erdemir, E., Dragotti, P.L., Gündüz, D.: ‘Privacy-cost trade-off in a smart meter system with a renewable energy source and a rechargeable battery’. ICASSP 2019-2019 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019, pp. 2687–2691.
-
-
111)
-
23. Wittmann, F.M., López, J.C., Rider, M.J.: ‘Nonintrusive load monitoring algorithm using mixed-integer linear programming’, IEEE Trans. Consum. Electron., 2018, 64, (2), pp. 180–187.
-
-
112)
-
56. Van Dijk, M., Gentry, C., Halevi, S., et al: ‘Fully homomorphic encryption over the integers’. Annual Int. Conf. on the Theory and Applications of Cryptographic Techniques, Berlin, Germany, 2010, pp. 24–43.
-
-
113)
-
140. Zhang, Z., Qin, Z., Zhu, L., et al: ‘Cost-friendly differential privacy for smart meters: exploiting the dual roles of the noise’, IEEE Trans. Smart Grid, 2016, 8, (2), pp. 619–626.
-
-
114)
-
80. Farokhi, F.: ‘Non-stochastic hypothesis testing with application to privacy against hypothesis-testing adversaries’. 2019 IEEE 58th Conf. on Decision and Control (CDC), Nice, France, 2019, pp. 6118–6123.
-
-
115)
-
74. Sweeney, L.: ‘k-anonymity: a model for protecting privacy’, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 2002, 10, (5), pp. 557–570.
-
-
116)
-
95. Liu, E., Cheng, P.: ‘Achieving privacy protection using distributed load scheduling: a randomized approach’, IEEE Trans. Smart Grid, 2017, 8, (5), pp. 2460–2473.
-
-
117)
-
84. Sandberg, H., Dán, G., Thobaben, R.: ‘Differentially private state estimation in distribution networks with smart meters’. 2015 54th IEEE Conf. on Decision and Control (CDC), Osaka, Japan, 2015, pp. 4492–4498.
-
-
118)
-
100. Chen, D., Irwin, D., Shenoy, P., et al: ‘Combined heat and privacy: preventing occupancy detection from smart meters’. 2014 IEEE Int. Conf. on Pervasive Computing and Communications (PerCom), 2014, pp. 208–215.
-
-
119)
-
3. Zheng, J., Gao, D.W., Lin, L.: ‘Smart meters in smart grid: an overview’. 2013 IEEE Green Technologies Conf. (GreenTech), Denver, CO, USA, 2013, pp. 57–64.
-
-
120)
-
8. Al-Wakeel, A., Wu, J.: ‘K-means based cluster analysis of residential smart meter measurements’, Energy Procedia, 2016, 88, pp. 754–760.
-
-
121)
-
10. McDaniel, P., McLaughlin, S.: ‘Security and privacy challenges in the smart grid’, IEEE Secur. Priv., 2009, 7, (3), pp. 75–77.
-
-
122)
-
60. Li, F., Luo, B., Liu, P.: ‘Secure information aggregation for smart grids using homomorphic encryption’. 2010 First IEEE int. Conf. on Smart Grid Communications, Gaithersburg, MD, USA, 2010, pp. 327–332.
-
-
123)
-
148. Perrier, V., Asghar, H.J., Kaafar, D.: ‘Private continual release of real-valued data streams’. Proc. of the Network and Distributed System Security Symp. (NDSS), San Diego, CA, USA, 2019.
-
-
124)
-
28. Johnson, M.J., Willsky, A.S.: ‘Bayesian nonparametric hidden semi-markov models’, J. Mach. Learn. Res., 2013, 14, (Feb), pp. 673–701.
-
-
125)
-
93. Chin, J.-X., De Rubira, T.T., Hug, G.: ‘Privacy-protecting energy management unit through model-distribution predictive control’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 3084–3093.
-
-
126)
-
72. Kreuter, B., Shelat, A., Shen, C.-H.: ‘Billion-gate secure computation with malicious adversaries’. USENIX Security Symp., Bellevue, WA, USA, 2012, vol. 12, pp. 285–300.
-
-
127)
-
138. Backes, M., Meiser, S.: ‘Differentially private smart metering with battery recharging’. Data Privacy Management and Autonomous Spontaneous Security, Egham, UK, 2013, pp. 194–212.
-
-
128)
-
7. Huang, M., Wei, Z., Pau, M., et al: ‘Interval state estimation for low-voltage distribution systems based on smart meter data’, IEEE Trans. Instrum. Meas., 2018, 68, (9), pp. 3090–3099.
-
-
129)
-
121. Chin, J.-X., Giaconi, G., De Rubira, T.T., et al: ‘Considering time correlation in the estimation of privacy loss for consumers with smart meters’. 2018 Power Systems Computation Conf. (PSCC), Dublin, Ireland, 2018, pp. 1–7.
-
-
130)
-
110. Yamamoto, H.: ‘A source coding problem for sources with additional outputs to keep secret from the receiver or wiretappers’, IEEE Trans. Inf. Theory, 1983, 29, (6), pp. 918–923.
-
-
131)
-
119. Arrieta, M., Esnaola, I., Effros, M.: ‘Universal privacy guarantees for smart meters’. 2019 IEEE Int. Symp. on Information Theory (ISIT), 2019, pp. 2154–2158.
-
-
132)
-
123. Tanaka, T., Skoglund, M., Sandberg, H., et al: ‘Directed information as privacy measure in cloud-based control’, arXiv preprint arXiv:1705.02802, 2017.
-
-
133)
-
61. Garcia, F.D., Jacobs, B.: ‘Privacy-friendly energy-metering via homomorphic encryption’. Int. Workshop on Security and Trust Management, Athens, Greece, 2010, pp. 226–238.
-
-
134)
-
58. Keoh, S.L., Ang, Y.H., Tang, Z.: ‘A lightweight privacy-preserved spatial and temporal aggregation of energy data’. 2015 11th Int. Conf. on Information Assurance and Security (IAS), Marrakech, Morocco, 2015, pp. 1–6.
-
-
135)
-
130. Lee, J., Clifton, C.: ‘Differential identifiability’. Proc. of the 18th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 2012, pp. 1041–1049.
-
-
136)
-
132. Osia, S.A., Rassouli, B., Haddadi, H., et al: ‘Privacy against brute-force inference attacks’. 2019 IEEE Int. Symp. on Information Theory (ISIT), Paris, France, 2019, pp. 637–641.
-
-
137)
-
29. Stankovic, V., Liao, J., Stankovic, L.: ‘A graph-based signal processing approach for low-rate energy disaggregation’. 2014 IEEE symp. on Computational Intelligence for Engineering Solutions (CIES), Orlando, FL, USA, 2014, pp. 81–87.
-
-
138)
-
11. Molina-Markham, A., Shenoy, P., Fu, K., et al: ‘Private memoirs of a smart meter’. Proc. of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building (BuildSys 2010), Zurich, Switzerland, 2010, pp. 61–66.
-
-
139)
-
37. Bidgely Inc. Available at: https://www.bidgely.com. Last Accessed: 6 May 2020.
-
-
140)
-
116. Sankar, L., Rajagopalan, S.R., Mohajer, S., et al: ‘Smart meter privacy: A theoretical framework’, IEEE Trans. Smart Grid, 2012, 4, (2), pp. 837–846.
-
-
141)
-
64. Erkin, Z., Troncoso-Pastoriza, J.R., Lagendijk, R.L., et al: ‘Privacy-preserving data aggregation in smart metering systems: an overview’, IEEE Signal Process. Mag., 2013, 30, (2), pp. 75–86.
-
-
142)
-
78. Farokhi, F.: ‘Noiseless privacy’, arXiv preprint arXiv:1910.13027, 2019.
-
-
143)
-
67. Danezis, G., Fournet, C., Kohlweiss, M., et al: ‘Smart meter aggregation via secret-sharing’. Proc. of the first ACM workshop on Smart energy grid security, Berlin, Germany, 2013, pp. 75–80.
-
-
144)
-
25. Kim, H., Marwah, M., Arlitt, M., et al: ‘Unsupervised disaggregation of low frequency power measurements'. Proceedings of the 2011 SIAM international conference on data mining, Mesa, AZ, USA, 2011, pp. 747–758.
-
-
145)
-
68. Yao, A.C.: ‘Protocols for secure computations’. 23rd Annual Symp. on Foundations of Computer Science (SFCS'08 1982), Chicago, IL, USA, 1982, pp. 160–164.
-
-
146)
-
63. Kursawe, K., Danezis, G., Kohlweiss, M.: ‘Privacy-friendly aggregation for the smart-grid’. Int. Symp. on Privacy Enhancing Technologies Symp., Vigo, Spain, 2011, pp. 175–191.
-
-
147)
-
14. Chen, D., Barker, S., Subbaswamy, A., et al: ‘Non-intrusive occupancy monitoring using smart meters’. Proc. of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, Rome, Italy, 2013, pp. 1–8.
-
-
148)
-
150. Vadhan, S.: ‘The complexity of differential privacy’, Tutorials on the Foundations of Cryptography, 2017, pp. 347–450.
-
-
149)
-
15. Tang, G., Wu, K., Lei, J., et al: ‘The meter tells you are at home! nonintrusive occupancy detection via load curve data’. 2015 IEEE Int. Conf. on Smart Grid Communications (SmartGridComm), Miami, FL, USA, 2015, pp. 897–902.
-
-
150)
-
26. Kolter, J.Z., Jaakkola, T.: ‘Approximate inference in additive factorial HMMs with application to energy disaggregation’. Artificial Intelligence and Statistics, La Palma, Canary Islands, Spain, 2012, pp. 1472–1482.
-
-
151)
-
5. Woo, C.-K., Sreedharan, P., Hargreaves, J., et al: ‘A review of electricity product differentiation’, Appl. Energy, 2014, 114, pp. 262–272.
-
-
1)

Related content
