Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Optimised controlled charging of electric vehicles under peak power-based electricity pricing

This study presents a practical control method for electric vehicle (EV) charging optimisation for detached and attached houses. The developed EV charging control method utilises real-time measurements to minimise charging costs of up to two EVs in a single household. Since some Finnish distribution system operators have already launched peak power-based distribution tariffs for small-scale customers and because there is a lot of discussion on this kind of tariff development, the control method considers peak power-based charges. Additionally, the proposed smart charging control method utilises charging current measurements as feedback to reallocate unused charging capacity if an EV does not utilise the whole capacity allocated for it. The control method is implemented and tested with commercial EVs. The conducted hardware-in-the-loop simulations and measurements confirm that the control method works as intended. The proposed smart charging control reduces EV charging electricity distribution costs around 60% when compared to the uncontrolled EV charging.

References

    1. 1)
      • 14. Wan, Z., Li, H., He, H., et al: ‘A data-driven approach for real-time residential EV charging management’. IEEE Power and Energy Society General Meeting, Portland, OR, USA, August 2018, pp. 15.
    2. 2)
      • 17. Mobarak, M. H., Bauman, J.: ‘Vehicle-directed smart charging strategies to mitigate the effect of long-range EV charging on distribution transformer aging’, IEEE Trans. Transp. Electri., 2019, 5, (4), pp. 10971111.
    3. 3)
      • 11. Öhrlund, I., Schultzberg, M., Bartusch, C.: ‘Identifying and estimating the effects of a mandatory billing demand charge’, Appl. Energy, 2019, 237, pp. 885895.
    4. 4)
      • 32. European Commission.: ‘Benchmarking smart metering deployment in the EU-28’, Tractebel Impact, 2019, pp. 1141.
    5. 5)
      • 16. Chung, Y. W., Khaki, B., Chu, C., et al: ‘Electric vehicle user behavior prediction using hybrid kernel density estimator’. 2018 Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, June 2018, pp. 16.
    6. 6)
      • 15. Aragon, G., Werner-Kytola, O., Gumrukcu, E.: ‘Stochastic optimization framework for online scheduling of an EV charging station in a residential place with photovoltaics and energy storage system’. 2019 IEEE Milan PowerTech, Milan, Italy, June 2019, pp. 16.
    7. 7)
      • 12. Datta, U., Saiprasad, N., Kalam, A., et al: ‘A price-regulated electric vehicle charge-discharge strategy for G2 V, V2H, and V2G’, Int. J. Energy Res., 2019, 43, (2), pp. 10321042.
    8. 8)
      • 19. Zhang, G., Tan, S. T., Gary Wang, G.: ‘Real-time smart charging of electric vehicles for demand charge reduction at non-residential sites’, IEEE Trans. Smart Grid, 2018, 9, (5), pp. 40274037.
    9. 9)
      • 30. García Veloso, C., Rauma, K., Fernandez Orjuela, J., et al: ‘Real-time agent-based control of plug-in electric vehicles for voltage and thermal management of LV networks: formulation and HIL validation’, IET Gener. Transm. Distrib., 2020, 14, (11), pp. 112.
    10. 10)
      • 33. Distribution of population by degree of urbanisation, dwelling type and income group – EU-SILC survey’, http://appsso.eurostat.ec.europa.eu/nui/show.do?query=BOOKMARK_DS-057122_QID_1BA00AC6_UID_-3F171EB0&layout=TIME,C,X,0;BUILDING,L,X,1;GEO,L,Y,0;INCGRP,L,Z,0;DEG_URB,L,Z,1;INDICATORS,C,Z,2;&zSelection=DS-057122INDICATORS,OBS_FLAG;DS-057122INCGRP,TOTAL;DS-057122DEG_URB,TOTAL;&rankName1=INDICATORS_1_2_-1_2&rankName2=INCGRP_1_2_-1_2&rankName3=DEG-URB_1_2_-1_2&rankName4=TIME_1_0_0_0&rankName5=BUILDING_1_2_1_0&rankName6=GEO_1_2_0_1&sortC=ASC_-1_FIRST&rStp=&cStp=&rDCh=&cDCh=&rDM=true&cDM=true&footnes=false&empty=false&wai=false&time_mode=ROLLING&time_most_recent=false&lang=EN&cfo, accessed 28 April 2020.
    11. 11)
      • 9. Prices of electricity distribution’.: https://www.kuopionenergia.fi/wp-content/uploads/2020/07/S%C3%A4hk%C3%B6nsiirtohinnasto-01012020.pdf, (In Finnish: ‘Sähkönsiirtohinnat 1.1.2020’), accessed 13 August 2020.
    12. 12)
      • 31. Energy Authority.: ‘National Report 2018 to the Agency of Cooperation of Energy Regulators and to the European Commission’, 2018, pp. 147.
    13. 13)
      • 13. Yoon, S.G., Choi, Y.J., Park, J.K., et al: ‘Stackelberg-game-based demand response for at-home electric vehicle charging’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 41724184.
    14. 14)
      • 27. International Standard IEC 61851-1: ‘Electric vehicle conductive charging system – part 1: general requirements’, 2017.
    15. 15)
      • 1. Dwellings and living conditions’: https://www.stat.fi/tup/suoluk/suoluk_asuminen_en.html#Dwellingsandlivingconditions, accessed 28 April 2020.
    16. 16)
      • 25. Gjelaj, M., Hashemi, S., Bach Andersen, P., et al: ‘Optimal infrastructure planning for EV fastcharging stations based on prediction of user behaviour’, IET Electr. Syst. Transp., 2020, 10, (1), pp. 112.
    17. 17)
      • 22. Kim, J. H., Shcherbakova, A.: ‘Common failures of demand response’, Energy, 2011, 36, (2), pp. 873880.
    18. 18)
      • 28. Passenger Traffic survey’.: https://julkaisut.vayla.fi/pdf8/lti_2018-01_henkiloliikennetutkimus_2016_web.pdf, (In Finnish: ‘Henkilöliikennetutkimus 2016’), accessed 28 April 2020.
    19. 19)
      • 20. Simolin, T., Rautiainen, A., Järventausta, P.: ‘Control of EV charging to reduce peak powers in domestic real estate’. 25th Int. Conf. on Electricity Distribution (CIRED), Madrid, Spain, June 2019, pp. 15.
    20. 20)
      • 7. Electricity distribution tariffs’.: https://www.helensahkoverkko.fi/globalassets/hinnastot-ja-sopimusehdot/hsv---enkku/Distribution-tariffs.pdf, accessed 28 April 2020.
    21. 21)
      • 23. Bohn, T., Cortes, C., Glenn, H.: ‘Local automatic load control for electric vehicle smart charging systems extensible via OCPP using compact submeters’. 2017 IEEE Transportation and Electrification Conf. and Expo (ITEC), Chicago, IL, USA, June 2017, pp. 724731.
    22. 22)
      • 3. Vehicles in use by gategory and propulsion’: https://www.traficom.fi/fi/tilastot/ajoneuvokannan-tilastot?toggle=Käyttövoimat, (In Finnish: ‘Liikennekäytössä olevat ajoneuvot ajoneuvoluokittain ja käyttövoimittain’), accessed 26 March 2020.
    23. 23)
      • 10. Lummi, K., Mutanen, A., Järventausta, P.: ‘Upcoming changes in distribution network tariffs – potential harmonization needs for demand charges’. 25th Int. Conf. on Electricity Distribution (CIRED), Madrid, Spain, June 2019, pp. 15.
    24. 24)
      • 2. Finnish Transport and Communications Agency Traficom.: ‘National passenger traffic survey, 2016.
    25. 25)
      • 5. Wang, H., Zhou, W., Qian, K., et al: ‘Modelling of ampacity and temperature of MV cables in presence of harmonic currents due to EVs charging in electrical distribution networks’, Int. J. Electr. Power Energy Syst., 2019, 112, pp. 127136.
    26. 26)
      • 18. Kutt, L., Saarijarvi, E., Lehtonen, M., et al: ‘Load shifting in the existing distribution network and perspectives for EV charging – case study’. IEEE PES Innovative Smart Grid Technologies Conf. Europe, Istanbul, Turkey, October 2014, pp. 16.
    27. 27)
      • 6. Lacey, G., Putrus, G., Bentley, E.: ‘Smart EV charging schedules: supporting the grid and protecting battery life’, IET Electr. Syst. Transp., 2017, 7, (1), pp. 8491.
    28. 28)
      • 24. Lee, Z.J., Chang, D., Jin, C., et al: ‘Large-scale adaptive electric vehicle charging’. 2018 IEEE Int. Conf. on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aalborg, Denmark, October 2018, pp. 17.
    29. 29)
      • 4. Melliger, M.A., van Vliet, O.P.R., Liimatainen, H.: ‘Anxiety vs reality – sufficiency of battery electric vehicle range in Switzerland and Finland’, Transp. Res. D, Transp. Environ., 2018, 65, pp. 101115.
    30. 30)
      • 8. Network service price list’.: https://www.lahtienergia.fi/fi/sahkoverkko/hinnastot-sopimusehdot/verkkopalveluhinnasto, (In Finnish: ‘Verkkopalveluhinnasto’), accessed 28 April 2020.
    31. 31)
      • 26. Najafi, S., Shafie-khah, M., Siano, P., et al: ‘Reinforcement learning method for plug-in electric vehicle bidding’, IET Smart Grid, 2019, 2, (4), pp. 529536.
    32. 32)
      • 21. Fachrizal, R., Munkhammar, J.: ‘Improved photovoltaic self-consumption in residential buildings with distributed and centralized smart charging of electric vehicles’, Energies, 2020, 13, (5), pp. 11531161.
    33. 33)
      • 29. Spina, A., Rauma, K., Aldejohann, C., et al: ‘Smart grid technology lab – a full-scale low voltage research facility at TU Dortmund University’. 2018 AEIT Int. Annu. Conf., Bari, Italy, October 2018, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2020.0100
Loading

Related content

content/journals/10.1049/iet-stg.2020.0100
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address