access icon openaccess Decentralised control strategy for hybrid battery energy storage system with considering dynamical state-of-charge regulation

Hybrid battery energy storage system (HBESS) consists of high power density battery and high energy density battery will have a bright future in special isolated DC microgrid conditions such as the all-electric ships and all-electric airplanes, which have strict limitation on storage capacity and size. In this study, a new decentralised control strategy based on mixed droop is proposed to HBESSs with considering the batteries. In decentralised control strategy, conventional Vā€“I droop controller is utilised to high energy density battery to mainly supply the steady power, Iā€“V droop controller is utilised to high power density battery to respond to power change and supply a few steady power. In addition, dynamical state-of-charge (SoC) regulation algorithm is utilised to reassign the battery power according to their own SoC. The power coordination of the high energy density batteries and high discharge rate batteries is achieved by adjusting the values virtual impedance and reference input voltage. Case study shows that the proposed control strategy is flexible and efficient.

Inspec keywords: secondary cells; voltage regulators; decentralised control; battery storage plants

Other keywords: battery power; all-electric airplanes; high power density battery; reference input voltage; high energy density battery; HBESS; Iā€“V droop controller; hybrid battery energy storage system; decentralised control strategy; virtual impedance; all-electric ships; high discharge rate batteries; state-of-charge regulation algorithm; dynamical state-of-charge regulation; isolated DC microgrid

Subjects: Secondary cells; Multivariable control systems; Voltage control; Other power stations and plants; Control of electric power systems; Secondary cells

References

    1. 1)
      • 3. Lu, X., Guerrero, J.M., Sun, K., et al: ‘An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy’, IEEE Trans. Power Electron., 2013, 29, (4), pp. 18001812.
    2. 2)
      • 12. Li, W., Joos, G.: ‘A power electronic interface for a battery supercapacitor hybrid energy storage system for wind applications’. IEEE Power Electronics Specialists Conf., Rhodes, Greece, 2008, pp. 17621768.
    3. 3)
      • 17. Li, C., Lu, J., Ma, W., et al: ‘Charging strategy amelioration of multilevel hybrid energy storage for electromagnetic launch’, Trans. of China Electrotech. Soc., 2017, 32, (13), pp. 118124.
    4. 4)
      • 5. Ghalebani, P., Niasati, M.: ‘A distributed control strategy based on droop control and low-bandwidth communication in DC microgrids with increased accuracy of load sharing’, Sustain. Cities Soc., 2018, 40, (4), pp. 155164.
    5. 5)
      • 30. Gu, Y., Li, W., He, X.: ‘Frequency-coordinating virtual impedance for autonomous power management of DC microgrid’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 23282337.
    6. 6)
      • 35. Member, S., Pagano, D.J., Lenz, E., et al: ‘Modeling and stability analysis of islanded DC microgrids under droop control’, IEEE Trans. Power Electron., 2014, 30, (8), pp. 45974607.
    7. 7)
      • 7. Shafiee, Q., Dragicevic, T., Vasquez, J.C., et al: ‘Hierarchical control for multiple DC-microgrids clusters’, IEEE Trans. Energy Convers., 2014, 29, (4), pp. 922933.
    8. 8)
      • 1. Zhang, D., Shah, N., Papageorgiou, L.G.: ‘Efficient energy consumption and operation management in a smart building with microgrid’, Energy Convers. Manag., 2013, 74, (6), pp. 209222.
    9. 9)
      • 11. Wen, S., Lan, H., Yu, D. C., et al: ‘Optimal sizing of hybrid energy storage sub-systems in PV/diesel ship power system using frequency analysis’, Energy, 2017, 140, pp. 198208.
    10. 10)
      • 6. Sun, K., Zhang, L., Xing, Y., et al: ‘A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage’, IEEE Trans. Power Electron., 2011, 26, (10), pp. 30323045.
    11. 11)
      • 16. Long, X., Lu, J., Wu, Y., et al: ‘High rate pulse discharge of lithium battery in electromagnetic launch system’, Int. J. Emerg. Electr. Power Syst., 2018, 19, (2), pp. 19.
    12. 12)
      • 4. Teo, T.T., Logenthiran, T., Woo, W.L., et al:Advanced control strategy for an energy storage system in a grid-connected microgrid with renewable energy generation’, IET Smart Grid, 2018, 1, (3), pp. 96103.
    13. 13)
      • 33. Xiao, J., Wang, P., Setyawan, L.: ‘Hierarchical control of hybrid energy storage system in DC microgrids’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 49154924.
    14. 14)
      • 25. Liu, B., Zhuo, F., Zhu, Y., et al: ‘System operation and energy management of a renewable energy-based DC micro-grid for high penetration depth application’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 11471155.
    15. 15)
      • 15. Hou, J., Song, Z., Hofmann, H., et al: ‘Control strategy for battery/flywheel hybrid energy storage in electric shipboard microgrids’, IEEE Trans. Ind. Inform., 2021, 17, (2), pp. 10891099.
    16. 16)
      • 8. Zhou, H., Bhattacharya, T., Tran, D., et al: ‘Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications’, IEEE Trans. Power Electron., 2013, 26, (3), pp. 923930.
    17. 17)
      • 28. Jin, Z., Meng, L., Guerrero, J.M.: ‘Comparative admittance-based analysis for different droop control approaches in DC microgrids’. 2017 IEEE Second Int. Conf. on DC Microgrids (ICDCM), Nuremburg, Germany, 2017, pp. 515522.
    18. 18)
      • 32. Zhao, X., Li, Y.W., Tian, H., et al: ‘Energy management strategy of multiple supercapacitors in a DC microgrid using adaptive virtual impedance’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (4), pp. 11741185.
    19. 19)
      • 20. Hou, J.: ‘Control and Optimization of Electric Ship Propulsion Systems with Hybrid Energy Storage’. University of Michigan, 2017.
    20. 20)
      • 29. Lu, X., Sun, K., Guerrero, J. M., et al: ‘State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 28042815.
    21. 21)
      • 13. Jing, W., Lai, C.H., Wong, S.H.W., et al: ‘Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: a review’, IET Renew. Power Gener., 2017, 11, (4), pp. 461469.
    22. 22)
      • 22. Kuperman, A., Aharon, I.: ‘Battery-ultracapacitor hybrids for pulsed current loads: A review’, Renew. Sustain. Eenergy Rev., 2011, 15, (2), pp. 981992.
    23. 23)
      • 14. Hannana, M.A., Hoqueb, M.M., Mohamed, A., et al: ‘Review of energy storage systems for electric vehicle applications: issues and challenges’, Renew Sust. Eenergy Rev., 2017, 69, pp, pp. 771789.
    24. 24)
      • 9. Jin, Z., Meng, L., Guerrero, J.M., et al: ‘Hierarchical control design for a shipboard power system with DC distribution and energy storage aboard future more-electric ships’, IEEE Trans. Ind. Inform., 2017, 99, pp. 111.
    25. 25)
      • 10. Boveri, A., Silvestro, F., Molinas, M., et al: ‘Optimal sizing of energy storage systems for shipboard applications’, IEEE Trans. Energy Convers., 2019, 34, (2), pp. 801811.
    26. 26)
      • 19. Jin, Z., Meng, L., Guerrero, J. M., et al: ‘Hierarchical control design for shipboard power system with DC distribution and energy storage aboard future more-electric ships’, IEEE Trans. Ind. Inform., 2018, 14, (2), pp. 703714.
    27. 27)
      • 27. Wang, C., Duan, J., Fan, B., et al: ‘Decentralized high-performance control of DC microgrids’, IEEE Trans. Smart Grid, 2019, 10, (3), pp. 33533363.
    28. 28)
      • 21. Laldin, O., Moshirvaziri, M., Trescases, O.: ‘Predictive algorithm for optimizing power flow in hybrid ultracapacitor/battery storage systems for light electric vehicles’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 38823895.
    29. 29)
      • 34. Zhang, X., Ruan, X., Tse, C.K.: ‘Impedance-based local stability criterion for DC distributed power systems’, IEEE Trans. Circrtits Syst. I, Regul. Pap., 2015, 62, (3), pp. 916925.
    30. 30)
      • 2. Zhang, Y., Zhang, T., Wang, R., et al: ‘Optimal operation of a smart residential microgrid based on model predictive control by considering uncertainties and storage impacts’, Sol. Energy, 2015, 122, (11), pp. 10521065.
    31. 31)
      • 24. Kollimalla, S.K., Mishra, M.K., Ukil, A., et al: ‘DC grid voltage regulation using new HBESS control strategy’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 772781.
    32. 32)
      • 26. Amin Bambang, R.T., Rohman, A.S., et al: ‘Energy management of fuel cell/battery/supercapacitor hybrid power sources using model predictive control’, IEEE Trans. Ind. Inform., 2014, 10, (4), pp. 19922002.
    33. 33)
      • 18. Yang, C., Sun, M., Zhang, L., et al: ‘Znfe2o4@ carbon core–shell nanoparticles encapsulated in reduced graphene oxide for high-performance Li-Ion hybrid supercapacitors’, ACS Appl. Mater. Interfaces, 2019, 11, (16), pp. 1471314721.
    34. 34)
      • 23. Lin, P., Wang, P., Xu, Q., et al: ‘An integral-droop based dynamic power sharing control for hybrid energy storage system in DC microgrid’. IEEE Ecce and Asia Int. Future Energy Electron. Conf., Kaohsiung, Taiwan, 2017, pp. 338343.
    35. 35)
      • 31. Xu, Q., Wang, P., Xiao, J., et al: ‘Modeling and stability analysis of hybrid energy storage system under hierarchical control’, IEEE PES Asia-Pacific Power and Energy Engine. Conf. (APPEEC), Brisbane, QLD, Australia, 2015, pp. 15.
    36. 36)
      • 36. Xu, Q., Xiao, J., Wang, P., et al: ‘A decentralized control strategy for autonomous transient power sharing and state-of-charge recovery in hybrid energy storage systems’, IEEE Trans. Sustain. Energy, 2017, 8, (4), pp. 14431452.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2020.0021
Loading

Related content

content/journals/10.1049/iet-stg.2020.0021
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading