access icon openaccess Fast dynamic voltage security margin estimation: concept and development

This study develops a machine learning-based method for a fast estimation of the dynamic voltage security margin (DVSM). The DVSM can incorporate the dynamic system response following a disturbance and it generally provides a better measure of security than the more commonly used static voltage security margin (VSM). Using the concept of transient P - V curves, this study first establishes and visualises the circumstances when the DVSM is to prefer the static VSM. To overcome the computational difficulties in estimating the DVSM, this study proposes a method based on training two separate neural networks on a data set composed of combinations of different operating conditions and contingency scenarios generated using time-domain simulations. The trained neural networks are used to improve the search algorithm and significantly increase the computational efficiency in estimating the DVSM. The machine learning-based approach is thus applied to support the estimation of the DVSM, while the actual margin is validated using time-domain simulations. The proposed method was tested on the Nordic32 test system and the number of time-domain simulations was possible to reduce with ∼70%, allowing system operators to perform the estimations in near real-time.

Inspec keywords: power system security; power system control; power engineering computing; power system faults; learning (artificial intelligence); neural nets; power system stability

Other keywords: DVSM; time-domain simulations; Nordic32 test system; dynamic system response; static VSM; fast dynamic voltage security margin estimation; static voltage security margin; machine learning-based method; trained neural networks

Subjects: Power system control; Knowledge engineering techniques; Control of electric power systems; Neural computing techniques; Power engineering computing

References

    1. 1)
      • 17. Sun, K., Likhate, S., Vittal, V., et al: ‘An online dynamic security assessment scheme using phasor measurements and decision trees’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 19351943.
    2. 2)
      • 31. PTI Siemens, ‘PSS®e 34.2.0 model library’ (Siemens Power Technologies International, Schenectady, NY, 2017).
    3. 3)
      • 20. Van Cutsem, T., Grenier, M.E., Lefebvre, D.: ‘Combined detailed and quasi steady-state time simulations for large-disturbance analysis’, Int. J. Electr. Power Energy Syst., 2006, 28, (9), pp. 634642.
    4. 4)
      • 8. Zhou, D.Q., Annakkage, U.D., Rajapakse, A.D.: ‘Online monitoring of voltage stability margin using an artificial neural network’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 15661574.
    5. 5)
      • 9. Van Cutsem, T., Wehenkel, L., Pavella, M., et al: ‘Decision tree approaches to voltage security assessment’, IEE Proc. C, Gener. Transm. Distrib., 1993, 140, (3), pp. 189198.
    6. 6)
      • 11. Fan, Y., Liu, S., Qin, L., et al: ‘A novel online estimation scheme for static voltage stability margin based on relationships exploration in a large data set’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 13801393.
    7. 7)
      • 32. Goodfellow, I., Bengio, Y., Courville, A.: ‘Deep learning’ (MIT Press, USA, 2016). Available at http://www.deeplearningbook.org.
    8. 8)
      • 18. Khoshkhoo, H., Shahrtash, S.M.: ‘Fast online dynamic voltage instability prediction and voltage stability classification’, IET Gener. Transm. Distrib., 2014, 8, (5), pp. 957965.
    9. 9)
      • 6. El-Keib, A.A., Ma, X.: ‘Application of artificial neural networks in voltage stability assessment’, IEEE Trans. Power Syst., 1995, 10, (4), pp. 18901896.
    10. 10)
      • 7. Jeyasurya, B.: ‘Artificial neural networks for on-line voltage stability assessment’. 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, WA, USA, 2000, vol. 4, pp. 20142018.
    11. 11)
      • 22. Amjady, N.: ‘Dynamic voltage security assessment by a neural network based method’, Electr. Power Syst. Res., 2003, 66, (3), pp. 215226.
    12. 12)
      • 23. Shang, J., Zhang, J., Zhao, W., et al: ‘ANN based dynamic voltage security assessment for a practical power system’. 2007 Int. Power Engineering Conf. (IPEC 2007), Singapore, Singapore, 2007, pp. 794798.
    13. 13)
      • 1. Glavic, M., Van Cutsem, T.: ‘A short survey of methods for voltage instability detection’. Proc. (IEEE) PES General Meeting, Detroit, MI, 2011, pp. 18.
    14. 14)
      • 27. Dobson, I.: ‘The irrelevance of load dynamics for the loading margin to voltage collapse and its sensitivities’. Bulk Power System Voltage Phenomena – III: Voltage Stability, Security & Control, Davos, Switzerland, 1994, pp. 509518.
    15. 15)
      • 28. Dharmakeerthi, C.H., Mithulananthan, N., Saha, T.K.: ‘Impact of electric vehicle fast charging on power system voltage stability’, Int. J. Electr. Power Energy Syst., 2014, 57, pp. 241249.
    16. 16)
      • 26. Pal, M.K.: ‘Voltage stability conditions considering load characteristics’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 243249.
    17. 17)
      • 16. Mansour, Y., Chang, A.Y., Tamby, J., et al: ‘Large scale dynamic security screening and ranking using neural networks’, IEEE Trans. Power Syst., 1997, 12, (2), pp. 954960.
    18. 18)
      • 25. Li, H., Chiang, H.D., Yoshida, H., et al: ‘The generation of zip-v curves for tracing power system steady state stationary behavior due to load and generation variations’. 1999 IEEE Power Engineering Society Summer Meeting. Conf. Proc., Edmonton, Canada, 1999, vol. 2, pp. 647651.
    19. 19)
      • 21. Sittithumwat, A., Tomsovic, K.: ‘Dynamic security margin estimation using artificial neural networks’. IEEE Power Engineering Society Summer Meeting, Chicago, IL, 2002, vol. 3, pp. 13221327.
    20. 20)
      • 29. Thams, F., Venzke, A., Eriksson, R., et al: ‘Efficient database generation for data-driven security assessment of power systems’, IEEE Trans. Power Syst., 2020, 35, pp. 3041.
    21. 21)
      • 2. Van Cutsem, T., Vournas, C.: ‘Voltage stability of electric power systems’ (Kluwer Academic Publishers, Boston, 1998).
    22. 22)
      • 5. Chiang, H.-D., Flueck, A.J., Shah, K.S., et al:CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations’, IEEE Trans. Power Syst., 1995, 10, (2), pp. 623634.
    23. 23)
      • 4. Ajjarapu, V., Christy, C.: ‘The continuation power flow: a tool for steady state voltage stability analysis’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 416423.
    24. 24)
      • 19. Liu, C., Tang, F., Bak, C.L.: ‘An accurate online dynamic security assessment scheme based on random forest’, Energies, 2018, 11, (7), p. 1914.
    25. 25)
      • 10. Zheng, C., Malbasa, V., Kezunovic, M.: ‘Regression tree for stability margin prediction using synchrophasor measurements’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 19781987.
    26. 26)
      • 24. Baghmisheh, M.V., Razmi, H.: ‘Dynamic voltage stability assessment of power transmission systems using neural networks’, Energy Convers. Manage., 2007, 49, (1), pp. 17.
    27. 27)
      • 15. Van Cutsem, T., Mailhot, R.: ‘Validation of a fast voltage stability analysis method on the Hydro-Quebec system’, IEEE Trans. Power Syst., 1997, 12, (1), pp. 282292.
    28. 28)
      • 14. Konstantelos, I., Jamgotchian, G., Tindemans, S.H., et al: ‘Implementation of a massively parallel dynamic security assessment platform for large-scale grids’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 14171426.
    29. 29)
      • 3. Van Cutsem, T., Moisse, C., Mailhot, R.: ‘Determination of secure operating limits with respect to voltage collapse’, IEEE Trans. Power Syst., 1999, 14, (1), pp. 327335.
    30. 30)
      • 30. Van Cutsem, T., Glavic, M., Rosehart, W., et al: ‘Test systems for voltage stability analysis and security assessment’. PES-TR19, IEEE/PES Task Force, 2015.
    31. 31)
      • 12. Li, S., Ajjarapu, V., Djukanovic, M.: ‘Adaptive online monitoring of voltage stability margin via local regression’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 701713.
    32. 32)
      • 33. Kingma, D.P., Ba, J.: ‘Adam: a method for stochastic optimization’, arXiv eprints, 2014, p. arXiv:1412.6980.
    33. 33)
      • 13. Savulescu, S.C.: ‘Real-time stability in power systems. [electronic resource]: techniques for early detection of the risk of blackout’, Power Electronics and Power Systems (Springer International Publishing, USA, 2014).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2019.0278
Loading

Related content

content/journals/10.1049/iet-stg.2019.0278
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading