access icon openaccess Electric power grid resilience with interdependencies between power and communication networks – a review

Because of the development of smart grid technology, today's power grid infrastructures are increasingly and heavily coupled with communication networks for many new and existing power applications. The interdependent relationship between the two systems, in which power control relies on the communication system to deliver control and monitoring messages and network devices require power supplies from the electrical grid, brings challenges in the effort to build a highly resilient integrated infrastructure. In this work, the authors summarise existing research on power grid resilience enhancement with the consideration of the interdependencies between power systems and communication networks. They categorise these works according to stages of resilience enhancement (i.e. failure analysis, vulnerability analysis, failure mitigation, and failure recovery) and methodologies (i.e. analytical solutions, co-simulation, and empirical studies). They also identify the limitations of existing works and propose potential research opportunities in this demanding area.

Inspec keywords: power control; power grids; failure analysis; smart power grids

Other keywords: smart grid technology; new power applications; electrical grid; interdependencies; existing power applications; network devices; power systems; power control; monitoring messages; power grid infrastructures; communication system; power grid resilience enhancement; communication networks; electric power grid resilience; highly resilient integrated infrastructure; interdependent relationship; power supplies

Subjects: Reliability; Computer communications; Power and energy control; Power system management, operation and economics

References

    1. 1)
      • 36. Liberatore, V., Al-Hammouri, A.: ‘Smart grid communication and co-simulation’. IEEE 2011 EnergyTech, Cleveland, OH, USA, 2011, pp. 15.
    2. 2)
      • 21. Tootaghaj, D.Z., Bartolini, N., Khamfroush, H., et al: ‘Controlling cascading failures in interdependent networks under incomplete knowledge’. 2017 IEEE 36th Symp. on Reliable Distributed Systems (SRDS), Hong Kong, China, 2017, pp. 5463.
    3. 3)
      • 55. Hannon, C., Yan, J., Liu, Y.A., et al: ‘A distributed virtual time system on embedded Linux for evaluating cyber-physical systems’. Proc. of the 2019 ACM SIGSIM Conf. on Principles of Advanced Discrete Simulation. SIGSIM-PADS ‘19, Chicago, IL, USA, 2019, pp. 3748. Available at http://doi.acm.org/10.1145/3316480.3322895.
    4. 4)
      • 58. Farwell, J.P., Rohozinski, R.: ‘Stuxnet and the future of cyber war’, Survival, 2011, 53, (1), pp. 2340.
    5. 5)
      • 53. Lantz, B., Heller, B., McKeown, N.: ‘A network in a laptop: rapid prototyping for software-defined networks’. Proc. of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, New York, NY, USA, 2010, p. 19.
    6. 6)
      • 10. Kwasinski, A.: ‘Lessons from field damage assessments about communication networks power supply and infrastructure performance during natural disasters with a focus on hurricane sandy’. FCC Workshop Network Resiliency, Brooklyn, New York, NY, USA, 2013.
    7. 7)
      • 57. Rong, M., Han, C., Liu, L.: ‘Critical infrastructure failure interdependencies in the 2008 Chinese winter storms’. 2010 Int. Conf. on Management and Service Science, Wuhan, China, 2010, pp. 14.
    8. 8)
      • 31. Lin, H., Veda, S.S., Shukla, S.S., et al: ‘Geco: global event-driven co-simulation framework for interconnected power system and communication network’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14441456.
    9. 9)
      • 24. Wäfler, J., Heegaard, P.E.: ‘Interdependency in smart grid recovery’. 2015 7th Int. Workshop on Reliable Networks Design and Modeling (RNDM), Munich, Germany, 2015, pp. 201207.
    10. 10)
      • 46. Chassin, D.P., Fuller, J.C., Djilali, N.: ‘Gridlab-d: an agent-based simulation framework for smart grids’, J. Appl. Math., 2014, 2014, pp. 112.
    11. 11)
      • 50. ‘Opnet technologies’, accessed 20 June 2019. Available at https://www.riverbed.com/products/steelcentral/opnet.html?redirect=opnet.
    12. 12)
      • 4. Bui, D.M., Lien, K.Y., Chen, S.L., et al: ‘Standards commonly used for microgrids – research project to develop an industry microgrid standard in Taiwan’, Electr. Power Compon. Syst., 2016, 44, (19), pp. 21432160. Available at https://doi.org/10.1080/15325008.2016.1216203.
    13. 13)
      • 59. Liang, G., Weller, S.R., Zhao, J., et al: ‘The 2015 Ukraine blackout: implications for false data injection attacks’, IEEE Trans. Power Syst., 2016, 32, (4), pp. 33173318.
    14. 14)
      • 9. Yu, X., Xue, Y.: ‘Smart grids: a cyber–physical systems perspective’, Proc. IEEE, 2016, 104, (5), pp. 10581070.
    15. 15)
      • 13. Banerjee, J., Das, A., Sen, A.: ‘A survey of interdependency models for critical infrastructure networks’, arXiv preprint arXiv:170205407, 2017.
    16. 16)
      • 2. Wikipedia: ‘Resilience – wikipedia, the free encyclopedia’, 2019, accessed 05 July 2019. Available at http://en.wikipedia.org/w/index.php?title=Resilience&oldid=900297692.
    17. 17)
      • 28. Chen, B., Butler-Purry, K.L., Goulart, A., et al: ‘Implementing a real-time cyber-physical system test bed in rtds and opnet’. 2014 North American Power Symp. (NAPS), Pullman, WA, USA, 2014, pp. 16.
    18. 18)
      • 43. Manitoba, H.: ‘Research centre’, PSCAD/EMTDC: Electromagnetic transients program including dc systems, 1994.
    19. 19)
      • 7. Kuzlu, M., Pipattanasomporn, M., Rahman, S.: ‘Communication network requirements for major smart grid applications in han, nan and wan’, Comput. Netw., 2014, 67, pp. 7488.
    20. 20)
      • 17. Huang, Z., Wang, C., Ruj, S., et al: ‘Modeling cascading failures in smart power grid using interdependent complex networks and percolation theory’. 2013 IEEE 8th Conf. on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, Australia, 2013, pp. 10231028.
    21. 21)
      • 49. ‘Ns2 simulator’, accessed 20 June 2019. Available at http://nsnam.sourceforge.net/wiki/index.php/Main_Page.
    22. 22)
      • 6. Ford, A., Raiciu, C., Handley, M., et al: ‘Architectural guidelines for multipath TCP development’, IETF, Inf. RFC, 2011, 6182, pp. 128.
    23. 23)
      • 18. Parandehgheibi, M., Modiano, E.: ‘Robustness of interdependent networks: the case of communication networks and the power grid’. 2013 IEEE Global Communications Conf. (GLOBECOM), Atlanta, GA, USA, 2013, pp. 21642169.
    24. 24)
      • 38. Nutaro, J., Kuruganti, P.T., Miller, L., et al: ‘Integrated hybrid-simulation of electric power and communications systems’. 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 2007, pp. 18.
    25. 25)
      • 11. Distribution automation – feeder automation design guide’. Cisco Systems, 2019. Available at https://www.cisco.com/c/en/us/td/docs/solutions/Verticals/Distributed-Automation/Feeder-Automation/DG/DA-FA-DG/DA-FA-DG.pdf.
    26. 26)
      • 42. ‘Powerflow load flow analysis software’, accessed 20 June 2019. Available at https://www.easypower.com/products/features/powerflow.
    27. 27)
      • 34. Lévesque, M., Xu, D.Q., Joós, G., et al: ‘Communications and power distribution network co-simulation for multidisciplinary smart grid experimentations’. Proc. of the 45th Annual Simulation Symp., Orlando, Florida, USA, 2012, p. 2.
    28. 28)
      • 5. Atlas, A.K., Zinin, A.: ‘Basic specification for ip fast reroute: loop-free alternates’, 2008.
    29. 29)
      • 40. ‘Simulation tool – opendss’, accessed 20 June 2019. Available at http://smartgrid.epri.com/SimulationTool.aspx.
    30. 30)
      • 30. Hannon, C., Yan, J., Jin, D.: ‘Dssnet: A smart grid modeling platform combining electrical power distribution system simulation and software defined networking emulation’. Proc. of the 2016 ACM SIGSIM Conf. on Principles of Advanced Discrete Simulation, Banff, Alberta, Canada, 2016, pp. 131142.
    31. 31)
      • 23. Rosato, V., Issacharoff, L., Tiriticco, F., et al: ‘Modelling interdependent infrastructures using interacting dynamical models’, Int. J. Crit. Infrastruct., 2008, 4, (1–2), pp. 6379.
    32. 32)
      • 20. Baidya, P.M., Sun, W.: ‘Effective restoration strategies of interdependent power system and communication network’, J. Eng., 2017, 2017, (13), pp. 17601764.
    33. 33)
      • 14. Martins, L., Girao-Silva, R., Jorge, L., et al: ‘Interdependence between power grids and communication networks: a resilience perspective’. 13th Int. Conf. DRCN 2017-Design of Reliable Communication Networks, Munich, Germany, 2017, pp. 19.
    34. 34)
      • 19. Nguyen, D.T., Shen, Y., Thai, M.T.: ‘Detecting critical nodes in interdependent power networks for vulnerability assessment’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 151159.
    35. 35)
      • 54. Liljenstam, M., Liu, J., Nicol, D., et al: ‘Rinse: the real-time immersive network simulation environment for network security exercises’. Workshop on Principles of Advanced and Distributed Simulation (PADS'05), Monterey, CA, USA, 2005, pp. 119128.
    36. 36)
      • 29. Godfrey, T., Mullen, S., Griffith, D.W., et al: ‘Modeling smart grid applications with co-simulation’. 2010 first IEEE Int. Conf. on Smart Grid Communications, Gaithersburg, MD, USA, 2010, pp. 291296.
    37. 37)
      • 12. Bigger, J.E., Willingham, M., Krimgold, F., et al: ‘Consequences of critical infrastructure interdependencies: lessons from the 2004 Hurricane season in Florida’, Int. J. Critical Infrastruct., 2009, 5, pp. 199219.
    38. 38)
      • 51. Henderson, T.R., Lacage, M., Riley, G.F., et al: ‘Network simulations with the ns-3 simulator’, SIGCOMM Demonstration, 2008, 14, (14), p. 527.
    39. 39)
      • 35. Li, W., Monti, A., Luo, M., et al: ‘Vpnet: A co-simulation framework for analyzing communication channel effects on power systems’. 2011 IEEE Electric Ship Technologies Symp., Alexandria, VA, USA, 2011, pp. 143149.
    40. 40)
      • 37. Mallouhi, M., Al-Nashif, Y., Cox, D., et al: ‘A testbed for analyzing security of scada control systems (tasscs)’. ISGT 2011, Anaheim, CA, USA, 2011, pp. 17.
    41. 41)
      • 33. Hopkinson, K., Wang, X., Giovanini, R., et al: ‘Epochs: a platform for agent-based electric power and communication simulation built from commercial off-the-shelf components’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 548558.
    42. 42)
      • 47. Brice, C.W., Gökdere, L.U., Dougal, R.A.: ‘The virtual test bed: an environment for virtual prototyping’. Proc. of Int. Conf. on Electric Ship, Istanbul, Turkey, 1998, pp. 2731.
    43. 43)
      • 45. ‘Rtds technologies’, accessed 20 June 2019. Available at http://www.rtds.com/.
    44. 44)
      • 56. Krishnamurthy, V., Kwasinski, A., Duenas-Osorio, L.: ‘Comparison of power and telecommunications dependencies and interdependencies in the 2011 Tohoku and 2010 Maule earthquakes’, J. Infrastruct. Syst., 2016, 22, (3), p. 04016013.
    45. 45)
      • 15. Panteli, M., Mancarella, P.: ‘The grid: stronger, bigger, smarter?: presenting a conceptual framework of power system resilience’, IEEE Power Energy Mag., 2015, 13, (3), pp. 5866.
    46. 46)
      • 52. Varga, A.: ‘Omnet++’, in ‘Modeling and tools for network simulation’ (Springer, Germany, 2010), pp. 3559.
    47. 47)
      • 48. Tiller, M.: ‘Introduction to physical modeling with modelica’, vol. 615, (Springer Science & Business Media, USA, 2012).
    48. 48)
      • 25. Falahati, B., Fu, Y., Wu, L.: ‘Reliability assessment of smart grid considering direct cyber-power interdependencies’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 15151524.
    49. 49)
      • 39. ‘Powerworld coporation’, accessed 20 June 2019. Available at https://en.wikipedia.org/w/index.php?title=LaTeX&oldid=413720397.
    50. 50)
      • 26. Falahati, B., Fu, Y.: ‘Reliability assessment of smart grids considering indirect cyber-power interdependencies’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 16771685.
    51. 51)
      • 1. Moteff, J., Copeland, C., Fischer, J.: ‘Critical infrastructures: What makes an infrastructure critical?’. Library of Congress (Congressional Research Service), Washington DC, 2003.
    52. 52)
      • 8. Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: ‘Identifying, understanding, and analyzing critical infrastructure interdependencies’, IEEE Control Syst. Mag., 2001, 21, (6), pp. 1125.
    53. 53)
      • 16. Buldyrev, S.V., Parshani, R., Paul, G., et al: ‘Catastrophic cascade of failures in interdependent networks’, Nature, 2010, 464, (7291), p. 1025.
    54. 54)
      • 3. Farzin, H., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M.: ‘Enhancing power system resilience through hierarchical outage management in multi-microgrids’, IEEE Trans. Smart Grid, 2016, 7, (6), pp. 28692879.
    55. 55)
      • 22. Parandehgheibi, M., Modiano, E., Hay, D.: ‘Mitigating cascading failures in interdependent power grids and communication networks’. 2014 IEEE Int. Conf. on Smart Grid Communications (SmartGridComm), Venice, Italy, 2014, pp. 242247.
    56. 56)
      • 41. ‘Ge pslf’, accessed 20 June 2019. Available at https://www.geenergyconsulting.com/practice-area/software-products/pslf.
    57. 57)
      • 60. Wikipedia: ‘Percolation theory – wikipedia, the free encyclopedia’, 2019. Accessed 02 July 2019. Available at http://en.wikipedia.org/w/index.php?title=Percolation%20theory&oldid=900882642.
    58. 58)
      • 27. Davis, C., Tate, J., Okhravi, H., et al: ‘Scada cyber security testbed development’. 2006 38th North American Power Symp., Carbondale, IL, USA, 2006, pp. 483488.
    59. 59)
      • 44. ‘Adevs: A discrete event system simulator’, accessed 20 June 2019. Available at https://web.ornl.gov/~nutarojj/adevs/.
    60. 60)
      • 32. Ciraci, S., Daily, J., Fuller, J., et al: ‘Fncs: a framework for power system and communication networks co-simulation’. Proc. of the Symp. on Theory of Modeling & Simulation-DEVS Integrative, Tampa, Florida, USA, 2014, p. 36.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2019.0202
Loading

Related content

content/journals/10.1049/iet-stg.2019.0202
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading