access icon openaccess Two-stage restoration strategies for power systems considering coordinated dispatch between plug-in electric vehicles and wind power units

With increased penetration of wind power units and plug-in electric vehicles (PEVs), their control flexibility and quick response potentially provide an alternative way to fulfil the need for rapid restoration. A two-stage restoration strategy optimisation approach is presented with the coordination of PEVs and wind power units considered. The optimisation model is to maximise the restored generation capability and minimise the fluctuation of cranking power. In the first stage, the aim is to provide reliable cranking power remotely for black start generators through coordinated dispatch of PEVs and wind power units and quadratic programming (QP) models for dispatching electric vehicle aggregators (EVAs) subject to wind power fluctuations, and for dispatching numerous PEVs within each EVA are developed. To ensure close coordination between these two dispatching procedures, bi-level programming-based hierarchical decomposition approach is used to solve the QP models in an iterative way. In the second stage, an integer linear programming model is proposed to optimise the restoration schedules through an effective transformation of the original non-linear formulation, so as to reduce the computing time and effort significantly. Finally, a case study is presented to demonstrate the effectiveness and essential features of the developed models and methods.

Inspec keywords: scheduling; electric vehicles; power generation dispatch; quadratic programming; wind power plants; integer programming; power system restoration; optimisation; power generation economics; battery powered vehicles; linear programming

Other keywords: plug-in electric vehicles; reliable cranking power; coordinated dispatch; minimise; wind power units; restored generation capability; electric vehicle aggregators; stage restoration strategies; two-stage restoration strategy optimisation approach; power systems; power fluctuations

Subjects: Optimisation techniques; Wind power plants; Optimisation techniques; Power system management, operation and economics; Transportation

References

    1. 1)
      • 21. Sun, W., Liu, C.C., Chu, R.F.: ‘Optimal generator star-up strategy for power system restoration’. Proc. 15th Int. Conf. Intelligent System Applications to Power Systems, Brazil, November 2009.
    2. 2)
      • 17. Turker, H., Bacha, S.: ‘Optimal minimization of plug-in electric vehicle charging cost with vehicle-to-home and vehicle-to-grid concepts’, IEEE Trans. Veh. Technol., 2018, 67, (11), pp. 1028110292.
    3. 3)
      • 2. Zhang, C., Sun, L., Wen, F., et al: ‘An interpretative structural modeling based network reconfiguration strategy for power systems’, Int. J. Electr. Power Energy Syst., 2015, 65, pp. 8393.
    4. 4)
      • 18. Sun, W., Liu, C.C., Zhang, L.: ‘Optimal generation start-up strategy for bulk power system restoration’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 13571366.
    5. 5)
      • 23. Callaway, D.S., Hiskens, I.A.: ‘Achieving controllability of electric loads’, Proc. IEEE, 2011, 99, (1), pp. 184199.
    6. 6)
      • 1. Qiu, F., Wang, J., Chen, C., et al: ‘Optimal black start resource allocation’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 24932494.
    7. 7)
      • 10. Kojima, Y., Warashina, S., Kato, M., et al: ‘The development of power-system restoration method for a bulk power-system by applying knowledge engineering techniques’, IEEE Trans. Power Syst., 1989, 4, (3), pp. 12281235.
    8. 8)
      • 8. Liu, C.C., Liou, K.L., Chu, R.F., et al: ‘Generation capability dispatch for bulk power-system restoration- a knowledge-based approach’, IEEE Trans. Power Syst., 1993, 8, (1), pp. 316325.
    9. 9)
      • 12. Bretas, A.S., Phadke, A.G., ‘Artificial neural networks in power system restoration’, IEEE Trans. Power Deliv., 2003, 18, (4), pp. 11811186.
    10. 10)
      • 26. Zhang, G., Zhang, G., Gao, Y., et al: ‘Competitive strategic bidding optimization in electricity markets using bi-level programming and swarm technique’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 21382146.
    11. 11)
      • 29. USCAR, USABC goals for advanced batteries for EVs’. Available at http://www.uscar.org/guest/article_view.php?articles_id=85.
    12. 12)
      • 15. Karki, R., Thapa, S., Billinton, R.: ‘A simplified risk-based method for short-term wind power commitment’, IEEE Trans. Sustain. Energy, 2012, 3, (3), pp. 498505.
    13. 13)
      • 5. Wang, Z., Shen, C., Xu, Y., et al: ‘Risk-limiting load restoration for resilience enhancement with intermittent energy resources’, IEEE Trans. Smart Grid, 2019, 10, (3), pp. 25072522.
    14. 14)
      • 20. Perez-Guerrero, R., Heydt, G.T., Jack, N.J., et al: ‘Optimal restoration of distribution systems using dynamic programming’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 15891596.
    15. 15)
      • 6. Patsakis, G., Rajan, D., Aravena, I., et al: ‘Optimal black start allocation for power system restoration’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 67666776.
    16. 16)
      • 3. Lei, S., Wang, J., Hou, Y.: ‘Remote-controlled switch allocation enabling prompt restoration of distribution systems’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 31293142.
    17. 17)
      • 25. Fan, H., Cheng, H.: ‘Transmission network expansion planning with security constraints based on bi-level linear programming’, Eur. Trans. Electr. Power, 2009, 19, (3), pp. 388399.
    18. 18)
      • 7. Zhao, Y., Lin, Z., Ding, Y., et al: ‘A model predictive control based generator start-up optimization strategy for restoration with microgrids as black-start resources’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 71897203.
    19. 19)
      • 28. Wan, C., Xu, Z., Pinson, P., et al: ‘Optimal prediction intervals of wind power generation’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 11661174.
    20. 20)
      • 9. Ma, T.K., Liu, C.C., Tsai, M.S., et al: ‘Operational experience and maintenance of an on-line expert system for customer restoration and fault testing’, IEEE Trans. Power Syst., 1992, 7, (2), pp. 835842.
    21. 21)
      • 22. Yao, W., Zhao, J., Wen, F., et al: ‘A hierarchical decomposition approach for coordinated dispatch of plug-in electric vehicles’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 27682778.
    22. 22)
      • 4. Zhao, J., Wang, H., Liu, Y., et al: ‘Utility-oriented online load restoration considering wind power penetration’, IEEE Trans. Sustain. Energy, 2019, 10, (2), pp. 706717.
    23. 23)
      • 19. Soudi, F., Tomsovic, K.: ‘Optimal trade-offs in distribution protection design’, IEEE Trans. Power Deliv., 2001, 16, (2), pp. 292296.
    24. 24)
      • 14. Yan, J., Zhang, H., Liu, Y., et al: ‘Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 32763284.
    25. 25)
      • 11. Toune, S., Fudo, H., Genji, T., et al: ‘Comparative study of modern heuristic algorithms to service restoration in distribution systems’, IEEE Trans. Power Deliv., 2002, 17, (1), pp. 173181.
    26. 26)
      • 27. Bracken, J., Cheng, H.Z.: ‘Mathematical programs with optimization problems in the constraints’, Oper. Res., 1973, 21, (1), pp. 3744.
    27. 27)
      • 24. Pecas Lopes, J.A., Soares, F.J., Rocha Almeida, P.M.: ‘Integration of electric vehicles in the electric power system’, Proc. IEEE, 2011, 99, (1), pp. 168183.
    28. 28)
      • 13. Saraf, N., McIntyre, K., Dumas, J., et al: ‘The annual black start service selection analysis of ERCOT grid’, IEEE Trans. Power Syst., 2009, 24, (4), pp. 18671874.
    29. 29)
      • 16. Masrur, M.A., Skowronska, A.G., Hancock, J., et al: ‘Military-based vehicle-to-grid and vehicle-to-vehicle microgrid-system architecture and implementation’, IEEE Trans. Transp. Electrification, 2018, 4, (1), pp. 157171.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2019.0167
Loading

Related content

content/journals/10.1049/iet-stg.2019.0167
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading