access icon openaccess Framework of locality electricity trading system for profitable peer-to-peer power transaction in locality electricity market

This paper proposes an architecture of locality electricity market (LEM) for peer-to-peer (P2P) energy trading among a group of residential prosumers (consumers and producers) with renewable energy resources, smart meters, information and communication technologies, and home energy management systems in a smart residential locality. Prosumers may sell(buy) their excess generation(demand) in LEM at a profitable prices compared to the utility prices in P2P fashion. In order to manage the trading in LEM, a common portal named as locality electricity trading system (LETS) is introduced. The purpose of LETS is to prepare a trading agreement between the participants by fixing a price for every deal based on the quoted price and day-ahead power trading schedule given by the participants. An enhanced intelligent residential energy management system (EIREMS) is proposed at the prosumers' premises to enable their participation in the day-ahead energy trading process and in real-time scheduling of schedulable loads and battery for reducing the electricity bill with due consideration to the operational constraints and LETS agreement. The performances of proposed LETS and EIREMS are validated through a few case studies on a locality with ten prosumers. The proposed methodology endorses marginal economic benefit for all the participants.

Inspec keywords: pricing; demand side management; energy storage; power markets; energy management systems; smart power grids; power generation economics; power generation scheduling

Other keywords: home energy management systems; smart grid environment; day-ahead power trading schedule; smart meters; locality electricity trading system; LEM; trading agreement; residential consumers; utility price; electricity bill; LETS; day-ahead P2P energy trading process; profitable peer-to-peer power transaction; locality electricity market; renewable power generation units; residential prosumers; enhanced intelligent residential energy management system; profitable price; peer-to-peer energy trading; renewable energy usage; excess power

Subjects: Power system management, operation and economics

References

    1. 1)
      • 26. Alam, M.R., St-Hilaire, M., Kunz, T.: ‘An optimal P2P energy trading model for smart homes in the smart grid’, Energy Effic., 2017, 10, (6), pp. 14751493.
    2. 2)
      • 24. Kang, J., Yu, R., Huang, X., et al: ‘Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains’, IEEE Trans. Ind. Inf., 2017, 13, (6), pp. 31543164.
    3. 3)
      • 42. Li, Z., Kang, J., Yu, R., et al: ‘Consortium blockchain for secure energy trading in industrial internet of things’, IEEE Trans. Ind. Inf., 2018, 14, (8), pp. 36903700.
    4. 4)
      • 48. Arun, S.L., Selvan, M.P.: ‘Dynamic demand response in smart buildings using an intelligent residential load management system’, IET Gener. Transm. Distrib., 2017, 11, (17), pp. 43484357.
    5. 5)
      • 17. Tushar, W., Zhang, J.A., Smith, D.B., et al: ‘Prioritizing consumers in smart grid: a game theoretic approach’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14291438.
    6. 6)
      • 2. Esther, B.P., Kumar, K.S.: ‘A survey on residential demand side management architecture, approaches, optimization models and methods’, Renew. Sustain. Energy Rev., 2016, 59, pp. 342351.
    7. 7)
      • 5. Wu, Y., Lau, V.K.N., Tsang, D.H.K., et al: ‘Optimal energy scheduling for residential smart grid with centralized renewable energy source’, IEEE Syst. J., 2014, 8, (2), pp. 562576.
    8. 8)
      • 40. Mihaylov, M., Jurado, S., Avellana, N., et al: ‘NRGcoin: virtual currency for trading of renewable energy in smart grids’. 11th Int. Conf. on the European Energy Market (EEM14), Krakow, Poland, 2014, pp. 16.
    9. 9)
      • 11. Wang, C., Zhou, Y., Jiao, B., et al: ‘Robust optimization for load scheduling of a smart home with photovoltaic system’, Energy Convers. Manage., 2015, 102, pp. 247257.
    10. 10)
      • 38. Morstyn, T., McCulloch, M.D.: ‘Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences’, IEEE Trans. Power Syst., 2019, 34, (5), pp. 40054014.
    11. 11)
      • 45. Davison, M., Cranney, J., Summers, T., et al: ‘Decentralised energy market for implementation into the intergrid concept – part 2: integrated system’. 2018 7th Int. Conf. on Renewable Energy Research and Applications (ICRERA), Paris, France, 2018, pp. 287293.
    12. 12)
      • 20. Wang, Y., Saad, W., Han, Z., et al: ‘A game-theoretic approach to energy trading in the smart grid’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14391450.
    13. 13)
      • 47. Rao, B.H.: ‘An electric power trading framework for smart residential community in smart cities’, IET Smart Cities, 2019, 1, (2), pp. 4051.
    14. 14)
      • 4. Herter, K.: ‘Residential implementation of critical-peak pricing of electricity’, Energy Policy, 2007, 35, (4), pp. 21212130.
    15. 15)
      • 12. Mohsenian-Rad, A.-H., Wong, V.W.S., Jatskevich, J., et al: ‘Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 320331.
    16. 16)
      • 31. Paudel, A., Chaudhari, K., Long, C., et al: ‘Peer-to-peer energy trading in a prosumer-based community microgrid: a game-theoretic model’, IEEE Trans. Ind. Electron., 2019, 66, (8), pp. 60876097.
    17. 17)
      • 19. La, Q.D., Chan, Y.W.E., Soong, B.H.: ‘Power management of intelligent buildings facilitated by smart grid: a market approach’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 13891400.
    18. 18)
      • 28. Ning, W., Xu, W., Xu, Z., et al: ‘Peer-to-peer energy trading among microgrids with multidimensional willingness’, Energies, 2018, 11, p.3312.
    19. 19)
      • 3. Strbac, G.: ‘Demand side management: benefits and challenges’, Energy Policy, 2008, 36, (12), pp. 44194426.
    20. 20)
      • 41. Denktas, B., Pekdemir, S., Soykan, G.: ‘Peer to peer business model approach for renewable energy cooperatives’. 2018 7th Int. Conf. on Renewable Energy Research and Applications (ICRERA), Paris, France, 2018, pp. 13361339.
    21. 21)
      • 32. Wang, S., Taha, A.F., Wang, J., et al: ‘Energy crowdsourcing and peer-to-peer energy trading in blockchain-enabled smart grids’, IEEE Trans. Syst. Man Cybern., Syst., 2019, 49, (8), pp. 16121623.
    22. 22)
      • 18. Deng, R., Yang, Z., Chen, J., et al: ‘Residential energy consumption scheduling: a coupled-constraint game approach’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 13401350.
    23. 23)
      • 15. Maharjan, S., Zhu, Q., Zhang, Y., et al: ‘Dependable demand response management in the smart grid: a Stackelberg game approach’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 120132.
    24. 24)
      • 46. Arun, S.L., Selvan, M.P.: ‘Very short term prediction of solar radiation for residential load scheduling in smartgrid’. 2016 National Power Systems Conf. (NPSC), Bhubaneswar, India, 2016, pp. 15.
    25. 25)
      • 27. Liu, N., Yu, X., Wang, C., et al: ‘Energy-sharing model with price-based demand response for microgrids of peer-to-peer prosumers’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 35693583.
    26. 26)
      • 35. Morstyn, T., Teytelboym, A., Mcculloch, M.D.: ‘Bilateral contract networks for peer-to-peer energy trading’, IEEE Trans. Smart Grid, 2019, 10, (2), pp. 20262035.
    27. 27)
      • 43. Mannaro, K., Pinna, A., Marchesi, M.: ‘Crypto-trading: blockchain-oriented energy market’. 2017 AEIT Int. Annual Conf., Cagliari, Italy, 2017, pp. 15.
    28. 28)
      • 21. Cintuglu, M.H., Martin, H., Mohammed, O.A.: ‘Real-time implementation of multiagent-based game theory reverse auction model for microgrid market operation’. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016, pp. 11.
    29. 29)
      • 14. Chai, B., Chen, J., Yang, Z., et al: ‘Demand response management with multiple utility companies: a two-level game approach’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 722731.
    30. 30)
      • 33. Baroche, T., Pinson, P., Latimier, R.L.G., et al: ‘Exogenous cost allocation in peer-to-peer electricity markets’, IEEE Trans. Power Syst., 2019, 34, (4), pp. 25532564.
    31. 31)
      • 13. Chen, H., Li, Y., Louie, R.H.Y., et al: ‘Autonomous demand side management based on energy consumption scheduling and instantaneous load billing: an aggregative game approach’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 17441754.
    32. 32)
      • 6. Singh, S., Roy, A., Selvan, M.P.: ‘Smart load node for nonsmart load under smart grid paradigm: a new home energy management system’, IEEE Consum. Electron. Mag., 2019, 8, (2), pp. 2227.
    33. 33)
      • 10. Adika, C.O., Wang, L.: ‘Autonomous appliance scheduling for household energy management’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 673682.
    34. 34)
      • 23. Long, C., Wu, J., Zhang, C., et al: ‘Peer-to-peer energy trading in a community microgrid’. 2017 IEEE Power Energy Society General Meeting, Chicago, IL, USA, 2017, pp. 15.
    35. 35)
      • 29. Thakur, S., Hayes, B.P., Breslin, J.G.: ‘Distributed double auction for peer to peer energy trade using blockchains’. 2018 5th Int. Symp. on Environment-Friendly Energies and Applications (EFEA), Rome, Italy, 2018, pp. 18.
    36. 36)
      • 37. Baez-Gonzalez, P., Rodriguez-Diaz, E., Ridao Carlini, M.A., et al: ‘A power P2P market framework to boost renewable energy exchanges in local microgrids’. 2019 Int. Conf. on Smart Energy Systems and Technologies (SEST), Porto, Portugal, 2019, pp. 16.
    37. 37)
      • 44. Pipattanasomporn, M., Kuzlu, M., Rahman, S.: ‘A blockchain-based platform for exchange of solar energy: laboratory-scale implementation’. 2018 Int. Conf. and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Phuket, Thailand, 2018, pp. 19.
    38. 38)
      • 34. Khorasany, M., Mishra, Y., Ledwich, G.: ‘Design of auction-based approach for market clearing in peer-to-peer market platform’, J. Eng., 2019, 2019, (18), pp. 48134818.
    39. 39)
      • 25. Khorasany, M., Mishra, Y., Ledwich, G.: ‘Auction based energy trading in transactive energy market with active participation of prosumers and consumers’. 2017 Australasian Universities Power Engineering Conf. (AUPEC), Melbourne, Victoria, Australia, 2017, pp. 16.
    40. 40)
      • 8. Costanzo, G.T., Zhu, G., Anjos, M.F., et al: ‘A system architecture for autonomous demand side load management in smart buildings’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 21572165.
    41. 41)
      • 1. Fang, X., Misra, S., Xue, G., et al: ‘Smart grid; the new and improved power grid: a survey’, IEEE Commun. Surv. Tutorials, 2012, 14, (4), pp. 944980.
    42. 42)
      • 39. Guerrero, J., Chapman, A.C., Verbič, G.: ‘Decentralized P2P energy trading under network constraints in a low-voltage network’, IEEE Trans. Smart Grid, 2019, 10, (5), pp. 51635173.
    43. 43)
      • 22. Liu, T., Tan, X., Sun, B., et al: ‘Energy management of cooperative microgrids with P2P energy sharing in distribution networks’. 2015 IEEE Int. Conf. on Smart Grid Communications (SmartGridComm), Miami, FL, USA, 2015, pp. 410415.
    44. 44)
      • 36. Sorin, E., Bobo, L., Pinson, P.: ‘Consensus-based approach to peer-to-peer electricity markets with product differentiation’, IEEE Trans. Power Syst., 2019, 34, (2), pp. 9941004.
    45. 45)
      • 7. Arun, S.L., Selvan, M.P.: ‘Intelligent residential energy management system for dynamic demand response in smart buildings’, IEEE Syst. J., 2018, 12, pp. 13291340.
    46. 46)
      • 30. Lezama, F., Soares, J., Hernandez-Leal, P., et al: ‘Local energy markets: paving the path toward fully transactive energy systems’, IEEE Trans. Power Syst., 2019, 34, (5), pp. 40814088.
    47. 47)
      • 16. Nekouei, E., Alpcan, T., Chattopadhyay, D.: ‘Game-theoretic frameworks for demand response in electricity markets’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 748758.
    48. 48)
      • 9. Pipattanasomporn, M., Kuzlu, M., Rahman, S.: ‘An algorithm for intelligent home energy management and demand response analysis’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 21662173.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2019.0131
Loading

Related content

content/journals/10.1049/iet-stg.2019.0131
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading