Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Analysing dynamics and synthesising a robust vector control for the dc-voltage power port based on the modular multilevel converter in multi-infeed AC/DC smart grids

Among all converters, one of the most prominent technologies employed in multi-infeed ac/dc (MIACDC) smart grids is the modular multilevel converters (MMCs). The core part of the MIACDC grids is their dc-voltage power port. All MMC's components in a dc-voltage power port – which are capable of significantly impacting on the dynamics – are mathematically modelled in the space-phasor representation using the rotating dq-frame. Afterwards, the effects of each submodule capacitors and arm inductors on the dc-voltage power port's dynamics are investigated and analysed, separately. This paper mathematically shows that the former is affecting the low-frequency range of the bandwidth, and the latter is impacting on the high-frequency one. Moreover, this paper demonstrates that a robust, optimal controller synthesized by the µ-analysis is a good candidate to induce both robust stability and performance in an MMC-based dc-voltage power port. In order to illustrate the contributions of this article, detailed mathematical analyses; comparative results simulated by the switching model of MMC; and experimental results produced by a test rig, which is able to examine the transient performance of an MMC-based dc-voltage power port, are provided. For comparison, the results of the PI-Lead controller and those of another controller optimally synthesized have been provided.

References

    1. 1)
      • 13. Du, S., Wu, B., Zargari, N.: ‘Common-mode voltage minimization for grid-tied modular multilevel converter’, IEEE Trans. Ind. Electron, 2018, pp. 18, Available at https://ieeexplore.ieee.org/document/8543483, to appear.
    2. 2)
      • 1. Das, R., Madani, V., Sakis Meliopoulos, A.P.: ‘Leveraging smart grid technology and using microgrid as a vehicle to benefit DER integration’. Proc. IEEE Power & Energy Society Innovative Smart Grid Technologies Conf. (ISGT), Washington, D.C., USA, April 2017, pp. 15.
    3. 3)
      • 3. Lyu, J., Cai, X., Molinas, M.: ‘Optimal design of controller parameters for improving the stability of MMC-HVDC for wind farm integration’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6, (1), pp. 4053.
    4. 4)
      • 25. Solas, E., Abad, G., Barrena, J., et al: ‘Modular multilevel converter with different submodule concepts – part II: experimental validation and comparison for HVDC application’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 45364545.
    5. 5)
      • 36. Harnefors, L., Antonopoulos, A., Norrga, S., et al: ‘Dynamic analysis of modular multilevel converters’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 25262537.
    6. 6)
      • 8. Liu, X., Wang, P., Loh, P.C.: ‘A hybrid AC/DC microgrid and its coordination control’, IEEE Trans. Smart Grids, 2012, 2, (2), pp. 278286.
    7. 7)
      • 20. Ilves, K., Harnefors, L., Norrga, S., et al: ‘Analysis and operation of modular multilevel converters with phase-shifted carrier PWM’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 268283.
    8. 8)
      • 14. Wu, T.-F., Chou, T.-C., Huang, C.-W., et al: ‘Bi-directional grid-connected modular multilevel converters with direct digital control and D-Σ processes’, IEEE Trans. Power Electron, 2019, pp. 19, Available at https://ieeexplore.ieee.org/document/8629029, to appear.
    9. 9)
      • 9. Zhang, Y., Wang, H., Wang, Z., et al: ‘Simplified thermal modeling for IGBT modules with periodic power loss profiles in modular multilevel converters’, IEEE Trans. Ind. Electron., 2019, 66, (3), pp. 23232332.
    10. 10)
      • 32. Lu, M., Al-Durra, A., Muyeen, S.M., et al: ‘Benchmarking of stability and robustness against grid impedance variation for LCL-filtered grid-interfacing inverters’, IEEE Trans. Power Electron., 2018, 33, (10), pp. 90339046.
    11. 11)
      • 33. Pan, D., Ruan, X., Wang, X., et al: ‘A highly robust single-loop current control scheme for grid-connected inverter with an improved LCCL filter configuration’, IEEE Trans. Power Electron., 2018, 33, (10), pp. 84748487.
    12. 12)
      • 37. Leon, A.E., Mauricio, J. M, Solsona, J. A, et al: ‘Adaptive control strategy for VSC-based systems under unbalanced network conditions’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 311319.
    13. 13)
      • 42. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: ‘Control system design’ (Prentice-Hall, Upper Saddle River, 2000).
    14. 14)
      • 26. Bergna, G., Berne, E., Egrot, P., et al: ‘An energy-based controller for HVDC modular multilevel converter in decoupled double synchronous reference frame for voltage oscillations reduction’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 23602371.
    15. 15)
      • 30. Yazdani, A., Iravani, R.: ‘Voltage-sourced converters in power systems: modeling, control, and applications’ (Wiley, Hoboken, 2010, 1st edn.).
    16. 16)
      • 22. Li, T., Zhao, C.: ‘Recovering the modular multilevel converter from a cleared or isolated fault’, IET Gener. Transm. Distrib., 2015, 9, (6), pp. 550559.
    17. 17)
      • 28. Lescinar, A., Marquardt, R.: ‘An innovative modular multilevel converter topology suitable for a wide power range’. Proc. IEEE Power Tech Conf., Bologna, Italy, June 2003, pp. 16.
    18. 18)
      • 21. Perez, M.A., Bernet, S., Rodriguez, J., et al: ‘Circuit topologies, modeling, control schemes, and applications of modular multilevel converters’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 417.
    19. 19)
      • 2. Peyghami, S., Mokhtari, H., Blaabjerg, F.: ‘Autonomous operation of a hybrid AC/DC microgrid with multiple interlinking converters’, IEEE Trans. Smart Grid, 2018, 9, (6), pp. 64806488.
    20. 20)
      • 27. Zhang, Y., Adam, G.P., Lim, T., et al: ‘Hybrid multilevel converter: capacitor voltage balancing limits and its extension’, IEEE Trans. Ind. Inf., 2013, 9, (4), pp. 20632073.
    21. 21)
      • 18. Goncalves, J., Rogers, D.J., Liang, J.: ‘Submodule temperature regulation and balancing in modular multilevel converters’, IEEE Trans. Ind. Electron., 2018, 65, (9), pp. 70857094.
    22. 22)
      • 15. Nguyen, T.H., Al Hosani, K., El Moursi, M.S., et al: ‘An overview of modular multilevel converters in HVDC transmission systems with STATCOM operation during pole-to-pole DC short circuits’, IEEE Trans. Power Electron., 2019, 34, (5), pp. 41374160.
    23. 23)
      • 38. Zhou, J.Z., Ding, H., Fan, S., et al: ‘Impact of short-circuit ratio and phase-locked-loop parameters on the small-signal behavior of a VSC-HVDC converter’, IEEE Trans. Power Deliv., 2014, 29, (5), pp. 22872296.
    24. 24)
      • 23. Wang, C., Hao, Q., Ooi, B.-T.: ‘Reduction of low-frequency harmonics in modular multilevel converters (MMCs) by harmonic function analysis’, IET Gener. Transm. Distrib., 2014, 8, (2), pp. 328338.
    25. 25)
      • 17. Dargahi, V., Corzine, K.A., Enslin, J.H., et al: ‘Modular-concatenated-cell (MCC) multilevel converter: a novel circuit topology and innovative logic-equations-based control technique’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, September 2018, pp. 29702975.
    26. 26)
      • 31. Davari, M., Mohamed, Y.A.-R.I.: ‘Dynamics and robust control of a grid-connected VSC in multiterminal DC grids considering the instantaneous power of DC- and AC-side filters and DC grid uncertainty’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 19421958.
    27. 27)
      • 6. Fairley, P.: ‘Germany jump-starts the supergrid’, IEEE Spectr., 2013, 50, (5), pp. 3641.
    28. 28)
      • 16. Wang, Z., Wang, H., Zhang, Y., et al: ‘Submodule level power loss balancing control for modular multilevel converters’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, September 2018, pp. 57315736.
    29. 29)
      • 7. Haileselassie, T.M., Uhlen, K.: ‘Power system security in a meshed North sea HVDC grid’, Proc. IEEE, 2013, 101, (4), pp. 978990.
    30. 30)
      • 24. Liu, H., Loh, P.C., Blaabjerg, F.: ‘Review of fault diagnosis and fault-tolerant control for modular multilevel converter of HVDC’. Proc. Annual Conf. IEEE Industrial Electronics Society (IECON 2013), Vienna, Austria, November 2013, pp. 12421247.
    31. 31)
      • 10. Howell, S., Wang, H., Filizadeh, S: ‘Alternate arm modular multilevel converter energy balancing via overlap onset control’, IET J. Eng., 2019, 2019, (16), pp. 16491655.
    32. 32)
      • 34. Chen, D., Xu, L.: ‘Autonomous DC voltage control of a DC microgrid with multiple slack terminals’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 18971905.
    33. 33)
      • 19. Bi, T., Wang, S., Jia, K.: ‘Single pole-to-ground fault location method for MMC-HVDC system using active pulse’, IET Gener. Transm. Distrib., 2018, 12, (2), pp. 272278.
    34. 34)
      • 41. Bahrani, B., Kenzelmann, S., Rufer, A.: ‘Multivariable-PI-based dq current control of voltage source converters with superior axis decoupling capability’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 30163026.
    35. 35)
      • 5. Wang, P., Goel, L., Liu, X., et al: ‘Harmonizing AC and DC: a hybrid AC/DC future grid solution’, IEEE Power Energy Mag., 2013, 11, (3), pp. 7683.
    36. 36)
      • 4. Ghadiri, A., Haghifam, M.R., Miri Larimi, S.M.: ‘Comprehensive approach for hybrid AC/DC distribution network planning using genetic algorithm’, IET Gener. Transm. Distrib., 2017, 11, (16), pp. 38923902.
    37. 37)
      • 44. Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: ‘Uncertainty and robustness’, in (Eds.): ‘Feedback control theory’ (Macmillan Publishing Company, London, 1992), pp. 4562.
    38. 38)
      • 29. Chaudhuri, N.R., Chaudhuri, B., Majumder, R., et al: ‘Multi-terminal direct-current grids; modeling, analysis, and control’ (Wiley, Hoboken, 2014, 1st edn.).
    39. 39)
      • 12. Bergna-Diaz, G., Zonetti, D., Sanchez, S., et al: ‘PI passivity-based control and performance analysis of MMC multi-terminal HVDC systems’, IEEE J. Emerg. Sel. Top. Power Electron, 2018, pp. 112, Available at https://ieeexplore.ieee.org/document/8585134, to appear.
    40. 40)
      • 39. Davari, M., Gao, W., Blaabjerg, F.: ‘A fault-tolerant, passivity-based controller enhanced by the equilibrium-to-equilibrium maneuver capability for the DC-voltage power port VSC in multi-infeed AC/DC modernized grids’, IEEE J. Emerg. Sel. Top. Power Electron, 2019, pp. 123, Available at https://ieeexplore.ieee.org/document/8718605, to appear.
    41. 41)
      • 43. Gu, D.-W., Petkov, P.H., Konstantinov, M.M.: ‘Robust control design with MATLAB’ (Springer, London, 2005).
    42. 42)
      • 47. Narendra, K.S., Balakrishnan, J.: ‘Adaptive control using multiple models’, IEEE Trans. Autom. Control, 1997, 42, (2), pp. 171187.
    43. 43)
      • 11. Shi, X., Filizadeh, S., Jacobson, D.A.: ‘Loss evaluation for the hybrid cascaded MMC under different voltage-regulation methods’, IEEE Trans. Energy Convers., 2018, 33, (3), pp. 14871498.
    44. 44)
      • 35. Davari, M., Mohamed, Y.A.-R.I.: ‘Robust multi-objective control of VSC-based DC-voltage power port in hybrid AC/DC multi-terminal microgrids’, IEEE Trans. Smart Grids, 2013, 4, (3), pp. 15971612.
    45. 45)
      • 40. Silwal, S., Taghizadeh, S., Karimi-Ghartemani, M., et al: ‘An enhanced control system for single-phase inverters interfaced with weak and distorted grids’, IEEE Trans. Power Electron, 2019, Available at https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8682131, to appear.
    46. 46)
      • 45. Henrion, D., Šebek, M., Kučera, V.: ‘Positive polynomials and robust stabilization with fixed-order controllers’, IEEE Trans. Autom. Control, 2003, 48, (7), pp. 11781186.
    47. 47)
      • 46. Yang, F., Gani, M., Henrion, D.: ‘Fixed-order robust H controller design with regional pole assignment’, IEEE Trans. Autom. Control, 2007, 52, (10), pp. 19591963.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2019.0017
Loading

Related content

content/journals/10.1049/iet-stg.2019.0017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address