http://iet.metastore.ingenta.com
1887

access icon openaccess Enhanced MPPT method based on ANN-assisted sequential Monte–Carlo and quickest change detection

Loading full text...

Full text loading...

/deliver/fulltext/iet-stg/2/4/IET-STG.2019.0012.html;jsessionid=39utfm9h1jgog.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-stg.2019.0012&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Ahmed, J., Salam, Z.: ‘A modified P&O maximum power point tracking method with reduced steady-state oscillation and improved tracking efficiency’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 15061515.
    2. 2)
      • 2. Sher, H.A., Murtaza, A.F., Noman, A., et al: ‘A new sensorless hybrid MPPT algorithm based on fractional short-circuit current measurement and P&O MPPT’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 14261434.
    3. 3)
      • 3. Kollimalla, S.K., Mishra, M.K.: ‘A novel adaptive P&O MPPT algorithm considering sudden changes in the irradiance’, IEEE Trans. Energy Convers., 2014, 29, (3), pp. 602610.
    4. 4)
      • 4. Zakzouk, N.E., Elsaharty, M.A., Abdelsalam, A.K., et al: ‘Improved performance low-cost incremental conductance PV MPPT technique’, IET Renew. Power Gener., 2016, 10, (4), pp. 561574.
    5. 5)
      • 5. Hsieh, G.C., Hsieh, H.I., Tsai, C.Y., et al: ‘Photovoltaic power-increment-aided incremental-conductance MPPT with two-phased tracking’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 28952911.
    6. 6)
      • 6. Sera, D., Mathe, L., Kerekes, T., et al: ‘On the perturb-and-observe and incremental conductance MPPT methods for PV systems’, IEEE J. Photovoltaics, 2013, 3, (3), pp. 10701078.
    7. 7)
      • 7. Bendib, B., Belmili, H., Krim, F.: ‘A survey of the most used MPPT methods: conventional and advanced algorithms applied for photovoltaic systems’, Renew. Sustain. Energy Rev., 2015, 45, pp. 637648. Available at http://www.sciencedirect.com/science/article/pii/S1364032115000970.
    8. 8)
      • 8. Tang, S., Sun, Y., Chen, Y., et al: ‘An enhanced MPPT method combining fractional-order and fuzzy logic control’, IEEE J. Photovoltaics, 2017, 7, (2), pp. 640650.
    9. 9)
      • 9. Algazar, M.M., AL-monier, H., EL-halim, H.A., et al: ‘Maximum power point tracking using fuzzy logic control’, Int. J. Electr. Power Energy Syst., 2012, 39, (1), pp. 2128.
    10. 10)
      • 10. Lian, K.L., Jhang, J.H., Tian, I.S.: ‘A maximum power point tracking method based on perturb-and-observe combined with particle swarm optimization’, IEEE J. Photovoltaics, 2014, 4, (2), pp. 626633.
    11. 11)
      • 11. Manickam, C., Raman, G.R., Raman, G.P., et al: ‘A hybrid algorithm for tracking of GMPP based on P&O and PSO with reduced power oscillation in string inverters’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 60976106.
    12. 12)
      • 12. Renaudineau, H., Donatantonio, F., Fontchastagner, J., et al: ‘A PSO-based global MPPT technique for distributed PV power generation’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 10471058.
    13. 13)
      • 13. Ishaque, K., Salam, Z., Amjad, M., et al: ‘An improved particle swarm optimization (PSO) based MPPT for PV with reduced steady-state oscillation’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36273638.
    14. 14)
      • 14. Koad, R.B.A., Zobaa, A.F., El-Shahat, A.: ‘A novel MPPT algorithm based on particle swarm optimization for photovoltaic systems’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 468476.
    15. 15)
      • 15. Rizzo, S.A., Scelba, G.: ‘ANN based MPPT method for rapidly variable shading conditions’, Appl. Energy, 2015, 145, (Supp. C), pp. 124132.
    16. 16)
      • 16. El-Helw, H.M., Magdy, A., Marei, M.I.: ‘A hybrid maximum power point tracking technique for partially shaded photovoltaic arrays’, IEEE Access, 2017, 5, pp. 1190011908.
    17. 17)
      • 17. Hsu, R.C., Liu, C., Chen, W., et al: ‘Reinforcement learning-based maximum power point tracking method for photovoltaic array’, Int. J. Photoenergy, 2015, 2015, article ID 496401, Available at https://www.hindawi.com/journals/ijp/2015/496401/cta/.
    18. 18)
      • 18. Jung, Y., So, J., Yu, G., et al: ‘Improved perturbation and observation method (IP&O) of MPPT control for photovoltaic power systems’. Conf. Record of the Thirty-first IEEE Photovoltaic Specialists Conf., Lake Buena Vista, USA, 2005, pp. 17881791.
    19. 19)
      • 19. Basseville, M., Nikiforov, I.V.: ‘Detection of abrupt changes: theory and application’ (Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993).
    20. 20)
      • 20. Li, S., Wang, X.: ‘Cooperative change detection for voltage quality monitoring in smart grids’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (1), pp. 8699.
    21. 21)
      • 21. Chen, L., Wang, X.: ‘Adaptive fault localization in photovoltaic systems’, IEEE Trans. Smart Grid, 2017, 9, (6), pp. 67526763.
    22. 22)
      • 22. Sidorov, D., Panasetsky, D., Šmádl, V.: ‘Non-stationary autoregressive model for on-line detection of inter-area oscillations in power systems’. 2010 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), Gothenberg, Germany, 2010, pp. 15.
    23. 23)
      • 23. Andre-Obrecht, R.: ‘A new statistical approach for the automatic segmentation of continuous speech signals’, IEEE Trans. Acoust. Speech Signal Process., 1988, 36, (1), pp. 2940.
    24. 24)
      • 24. Chen, L., Li, S., Wang, X.: ‘Quickest fault detection in photovoltaic systems’, IEEE Trans. Smart Grid, 2018, 9, (3), pp. 18351847, DOI: 10.1109/TSG.2016.2601082.
    25. 25)
      • 25. Sumathi, S., Kumar, L.A., Surekha, P.: ‘Solar PV and wind energy conversion systems: an introduction to theory, modeling with MATLAB/SIMULINK, and the role of soft computing techniques’, Green energy and technology (Springer International Publishing, Cham, 2015), pp. 145245. Available at https://books.google.com/books?id=tl72BwAAQBAJ.
    26. 26)
      • 26. Doucet, A., de Freitas, N., Gordon, N. (Eds.): ‘An introduction to sequential Monte Carlo methods’ (Springer, New York, NY, 2001), pp. 314.
    27. 27)
      • 27. Arulampalam, M.S., Maskell, S., Gordon, N., et al: ‘A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 174188.
    28. 28)
      • 28. Li, T., Bolic, M., Djuric, P.M.: ‘Resampling methods for particle filtering: classification, implementation, and strategies’, IEEE Signal Process. Mag., 2015, 32, (3), pp. 7086.
    29. 29)
      • 29. Haykin, S.: ‘Neural networks: a comprehensive foundation’ (Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2007, 3rd edn.).
    30. 30)
      • 30. Jain, A.K., Mao, J., Mohiuddin, K.M.: ‘Artificial neural networks: a tutorial’, Computer, 1996, 29, (3), pp. 3144.
    31. 31)
      • 31. Hastie, T., Tibshirani, R., Friedman, J.H.: ‘The elements of statistical learning: data mining, inference, and prediction: with 200 full-color illustrations’ (Springer-Verlag, New York, 2001).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2019.0012
Loading

Related content

content/journals/10.1049/iet-stg.2019.0012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address