Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Grid integration and a power quality assessment of a wave-energy park

This study presents a step toward the grid connection of a wave-energy park through an electric power conversion system (EPCS) developed and installed for the wave-energy harvesting in Lysekil, Sweden. The EPCS comprises a rectifier, a DC bus, and an inverter followed by a harmonic filter (HF). The higher- and lower-order harmonics injected by the inverter in a power quality context are investigated. The lower-order voltage harmonics partially distort the voltage-source inverter output grid current. A phase-locked loop-based (PLL) grid-phase tracking is used to attenuate the lower-order harmonics by reflecting the grid harmonics in the inverter output. An expression for the grid-current harmonics as a function of the grid-voltage harmonics has been derived and implemented. A mathematical model is derived to obtain a transfer function for the PLL, and finally, proportional–integral gains are tuned for stable system operation. An HF for mitigating the higher-order harmonics has been implemented. The total harmonic distortion is evaluated experimentally, and the results fulfil the grid-code requirements at various frequencies and harmonic orders.

References

    1. 1)
      • 29. Jiang, S., Cao, D., Li, Y., et al: ‘Low-THD, fast-transient, and cost-effective synchronous-frame repetitive controller for three-phase UPS inverters’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 29943005.
    2. 2)
      • 43. Blaabjerg, F., Teodorescu, R., Liserre, M., et al: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, pp. 13981409.
    3. 3)
      • 9. Gaidai, O., Ji, C., Kalogeri, C., et al: ‘SEM-REV energy site extreme wave prediction’, Renew. Energy, 2017, 101, pp. 894899.
    4. 4)
      • 13. Leijon, M., Boström, C., Danielsson, O., et al: ‘Wave energy from the North sea: experiences from the Lysekil research site’, Surv. Geophys., 2008, 29, (3), pp. 221240.
    5. 5)
      • 3. Shrivastava, S., Subudhi, B., Das, S.: ‘Distributed voltage and frequency synchronisation control scheme for islanded inverter-based microgrid’, IET Smart Grid, 2018, 1, (2), pp. 4856.
    6. 6)
      • 11. Rijnland Magazine: ‘Blue energy deal Verlengd, Groene Stroom Uit blue energy’. Available at https://www.rijnland.net/actueel/nieuws/nieuws-2017/blue-energy-deal-verlengd-groene-stroom-uit-blue-energy, accessed 11 February 2019.
    7. 7)
      • 42. Ekström, R., Kurupath, V., Svensson, O., et al: ‘Measurement system design and implementation for grid-connected marine substation’, Renew. Energy, 2013, 55, pp. 338346.
    8. 8)
      • 20. Hong, Y., Mikael, E., Castellucci, V., et al: ‘Linear generator-based wave energy converter model with experimental verification and three loading strategies’, IET Renew. Power Gener., 2015, 10, (2), pp. 349359.
    9. 9)
      • 28. Mattavelli, P., Marafao, F.P.: ‘Repetitive-based control for selective harmonic compensation in active power filters’, IEEE Trans. Ind. Electron., 2004, 51, (5), pp. 10181024.
    10. 10)
      • 33. Ekström, R., Leijon, M.: ‘Lower order grid current harmonics for a voltage-source inverter connected to a distorted grid’, Electr. Power Syst. Res., 2014, 106, pp. 226231.
    11. 11)
      • 21. Boström, C., Waters, R., Lejerskog, E., et al: ‘Study of a wave energy converter connected to a nonlinear load’, IEEE J. Ocean. Eng., 2009, 34, pp. 123127.
    12. 12)
      • 48. Amirnaser Yazdani, R.I.: ‘Voltage-sourced converters in power systems: modeling, control, and applications’. Private Equity and Venture Capital in Europe, 2010, pp. 187204.
    13. 13)
      • 24. OES: ‘Annual Report 2015’, Ocean Energy Syst., 2015, Available at https://report2015.ocean-energy-systems.org/, accessed 27 January 2019.
    14. 14)
      • 5. Pascal, R., Combourieu, A., Nauwelaerts, S., et al: ‘Experimental assessment of an innovative management system for mooring loads’. Proc. Twelfth European Wave Energy Conf., Cork, Ireland, 2017, pp. 645653.
    15. 15)
      • 14. Leijon, M., Waters, R., Rahm, M., et al: ‘Catch the wave to electricity: the conversion of wave motions to electricity using a grid-oriented approach’, IEEE Power Energy Mag., 2009, 7, pp. 5054.
    16. 16)
      • 15. Previsic, M., Bedard, R., Hagerman, G.: ‘E2i EPRI assessment offshore wave energy conversion devices’. E2I EPRI WP – 004 – US – Rev 1, 2004, pp. 152.
    17. 17)
      • 4. Callaway, E.: ‘Energy: to catch a wave’, Nature, 2007, 450, pp. 156159.
    18. 18)
      • 19. Bostrom, C., Ekergard, B., Waters, R., et al: ‘Linear generator connected to a resonance-rectifier circuit’, IEEE J. Ocean. Eng., 2013, 38, (2), pp. 255262.
    19. 19)
      • 16. Falnes, J., Hals, J.: ‘Heaving buoys, point absorbers and arrays’, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 2012, pp. 246277.
    20. 20)
      • 40. Rahm, M., Boström, C., Svensson, O., et al: ‘Offshore underwater substation for wave energy converter arrays’, IET Renew. Power Gener., 2010, 4, (6), p. 602.
    21. 21)
      • 7. Henriques, J.C.C., Sheng, W., Falcão, A.F.O., Gato, L.M.C.: ‘A comparison of biradial and wells air turbines on the Mutriku breakwater OWC wave power plant’. Proc. of the Int. Conf. on Offshore Mechanics and Arctic Engineering – OMAE, Trondheim, Norway, June 2017.
    22. 22)
      • 37. Strömstedt, E., Leijon, M.: ‘Three-dimensional oscillation dynamics of the in situ piston rod transmission between buoy line and the double hinge-connected translator in an offshore linear wave energy converter’, J. Offshore Mech. Arct. Eng., 2016, 138, (3), p. 31901.
    23. 23)
      • 26. Allmeling, J.: ‘A control structure for fast harmonics compensation inactive filters’, IEEE Trans. Power Electron., 2004, 19, (2), pp. 508514.
    24. 24)
      • 39. Kurupath, V., Ekström, R., Leijon, M.: ‘Optimal constant dc link voltage operation of a wave energy converter’, Energies, 2013, 6, (4), pp. 19932006.
    25. 25)
      • 25. OES - IEA: ‘International levelised cost of energy for ocean energy technologies’, 2015, Available at http://www.juliafchozas.com/projects/iea-oes-cost-energy-assessment/, accessed 05 February 2019.
    26. 26)
      • 30. Kim, S.Y., Park, Y.: ‘Compensation of dead-time effects based on adaptive harmonic filtering in the vector-controlled AC motor drives’, IEEE Trans. Ind. Electron., 2007, 54, (3), pp. 17681777.
    27. 27)
      • 49. Chung, S.-K.: ‘Phase-locked loop for grid-connected three-phase power conversion systems’, IEE Proc. Electr. Power Appl., 2000, 147, (3), p. 213.
    28. 28)
      • 44. Ahmed, K.H., Finney, S.J., Williams, B.W.: ‘Passive filter design for three-phase inverter interfacing in distributed generation’. Fifth Int. Conf. Workshop Compatibility in Power Electronics (CPE 2007), Gdansk, Poland, 2007.
    29. 29)
      • 18. Lejerskog, E., Boström, C., Hai, L., et al: ‘Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site’, Renew. Energy, 2015, 77, pp. 914.
    30. 30)
      • 2. Mobil, E.: ‘The outlook for energy’, 2012, Available at http://www.wec-france.org/DocumentsPDF/rapports/RapportEXXONMOBIL.pdf, accessed 21 February 2019.
    31. 31)
      • 10. Vicinanza, D., Contestabile, P., Di Lauro, E.: ‘Overtopping breakwater for wave energy conversion: status and perspectives’. Proc. Twelfth European Wave and Tidal Energy Conf., Cork, Ireland, 2017, pp. 11941199.
    32. 32)
      • 35. Waters, R., Stålberg, M., Danielsson, O., et al: ‘Experimental results from sea trials of an offshore wave energy system’, Appl. Phys. Lett., 2007, 90, (3), pp. 034105-13.
    33. 33)
      • 36. Parwal, A., Fregelius, M., Leijon, J., et al: ‘Experimental test of grid connected VSC to improve the power quality in a wave power system’. Fifth Int. Conf. Electric Power and Energy Conversion Systems (EPECS), Kitakyushu, Japan, 2018, pp. 17.
    34. 34)
      • 12. Peng, X., Wild, J.: ‘Innovative microgrid solution for renewable energy integration within the REIDS initiative’, Energy Proc., 143, 2017, pp. 599604.
    35. 35)
      • 45. Blasko, V., Kaura, V.: ‘A novel control to actively damp resonance in input LC filter of a three-phase voltage source converter’, IEEE Trans. Ind. Appl., 1997, 33, (2), pp. 542550.
    36. 36)
      • 47. Svensson, J.: ‘Voltage angle control of a voltage source inverter – application to a grid-connected wind turbine’. PhD thesis, CHALMERS University, 1998.
    37. 37)
      • 8. Brodersen, H.J., Nielsen, K., Kofoed, J.P.: ‘Development of the Danish test site DanWEC’. Proc. Tenth European Wave Energy Conf., Aalbord, Denmark, 2013, pp. 510.
    38. 38)
      • 41. Ekström, R., Leijon, M.: ‘Control of offshore marine substation for grid-connection of a wave power farm’, Int. J. Mar. Energy, 2014, 5, pp. 2437.
    39. 39)
      • 32. Ciobotaru, M., Teodorescu, R., Blaabjerg, F.: ‘A new single phase PLL structure based on second order generalized integrator’. Proc. 37th IEEE Power Electronics Specialists Conf., Jeju, South Korea, June 2006, pp. 16.
    40. 40)
      • 23. Ivanova, I.A., Bernhoff, H., Ågren, O., et al: ‘Simulated generator for wave energy extraction in deep water’, Ocean Eng.., 2005, 32, (14-15), pp. 16641678.
    41. 41)
      • 34. Falcao, A.: ‘Wave energy utilization: a review of the technologies’, Renew. Sustain. Energy Rev., 2010, 14, pp. 899918.
    42. 42)
      • 38. Leijon, M., Waters, R., Rahm, M., et al: ‘Catch the wave to electricity’, IEEE Power Energy Mag., 2009, 7, (1), pp. 5054.
    43. 43)
      • 27. Yepes, A.G., Freijedo, F.D., Doval-Gandoy, J., et al: ‘Effects of discretization methods on the performance of resonant controllers,’, IEEE Trans. Power Electron., 2010, 25, (7), pp. 16921712.
    44. 44)
      • 22. Leijon, M., Skoglund, A., Waters, R., et al: ‘On the physics of power, energy and economics of renewable electric energy sources – part I’, Renew. Energy, 2010, 35, (8), pp. 17291734.
    45. 45)
      • 1. EIA – Energy Information Administration: ‘International energy outlook 2018’. Available at https://www.eia.gov/outlooks/ieo/, accessed 01 February 2019.
    46. 46)
      • 31. Orr, J.A., Emanuel, A.E.: ‘On the need for strict second harmonic limits’, IEEE Trans. Power Deliv., 2000, 15, (3), pp. 967971.
    47. 47)
      • 50. Institute of Electrical and Electronic Engineers: ‘IEEE Std. 519-1992: Recommended Practices and Requirements for Harmonic Control in Power Systems’, 1993, pp. 1112.
    48. 48)
      • 17. Parwal, A., Fregelius, M., Temiz, I., et al: ‘Energy management for a grid-connected wave energy park through a hybrid energy storage system’, Appl. Energy, 2018, 231, pp. 399411.
    49. 49)
      • 46. Ahmed, K.H., Finney, S.J., Williams, B.W.: ‘Passive filter design for three phase inverter interfacing in distributed generation’, Electr. Power Qual. Utilisation, 2007, XIII, (2), pp. 4958.
    50. 50)
      • 6. Mendonça, A., Dias, J., Didier, E., et al: ‘An integrated tool for modelling oscillating water column (OWC) wave energy converters (WEC) in vertical breakwaters’, J. Hydro-Environment Res., 2018, 19, pp. 198213.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2019.0009
Loading

Related content

content/journals/10.1049/iet-stg.2019.0009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address