Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Big data analytics in smart grids: state-of-the-art, challenges, opportunities, and future directions

Big data has potential to unlock novel groundbreaking opportunities in power grid that enhances a multitude of technical, social, and economic gains. As power grid technologies evolve in conjunction with measurement and communication technologies, this results in unprecedented amount of heterogeneous big data. In particular, computational complexity, data security, and operational integration of big data into power system planning and operational frameworks are the key challenges to transform the heterogeneous large dataset into actionable outcomes. In this context, suitable big data analytics combined with visualization can lead to better situational awareness and predictive decisions. This paper presents a comprehensive state-of-the-art review of big data analytics and its applications in power grids, and also identifies challenges and opportunities from utility, industry, and research perspectives. The paper analyzes research gaps and presents insights on future research directions to integrate big data analytics into power system planning and operational frameworks. Detailed information for utilities looking to apply big data analytics and insights on how utilities can enhance revenue streams and bring disruptive innovation are discussed. General guidelines for utilities to make the right investment in the adoption of big data analytics by unveiling interdependencies among critical infrastructures and operations are also provided.

References

    1. 1)
      • 10. Ta-Shma, P., Akbar, A., Gerson-Golan, G., et al: ‘An ingestion and analytics architecture for IoT applied to smart city use cases’, IEEE Internet Things J., 2017, 5, pp. 765774.
    2. 2)
      • 63. Pfoser, D., Jensen, C.S., Theodoridis, Y., et al: ‘Novel approaches to the indexing of moving object trajectories’. Proc. Very Large Data Bases Conf. (VLDB), 2000, pp. 395406.
    3. 3)
      • 81. Sheng, G., Hou, H., Jiang, X., et al: ‘A novel association rule mining method of big data for power transformers state parameters based on probabilistic graph model’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 695702.
    4. 4)
      • 53. Li, F., Luo, B., Liu, P.: ‘Secure information aggregation for smart grids using homomorphic encryption’. Proc. First IEEE Int. Conf. on Smart Grid Communications (SmartGridComm), 2010, pp. 327332.
    5. 5)
      • 134. Borodo, S.M., Shamsuddin, S.M., Hasan, S.: ‘Big data platforms and techniques’, Indonesian J. Electr. Eng. Comput. Sci., 2016, 1, (1), pp. 191200.
    6. 6)
      • 145. Apache. Available at http://https://flink.apache.org/, accessed January 2019.
    7. 7)
      • 14. Meliopoulos, A.P.S., Cokkinides, G., Huang, R., et al: ‘Smart grid technologies for autonomous operation and control’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 110.
    8. 8)
      • 64. Tayeb, J., Ulusoy, Ö, Wolfson, O.: ‘A quadtree-based dynamic attribute indexing method’, Comput. J., 1998, 41, (3), pp. 185200.
    9. 9)
      • 16. Hou, W., Ning, Z., Guo, L., et al: ‘Temporal, functional and spatial big data computing framework for large-scale smart grid’, IEEE Trans. Emerging Top. Comput., 2018, pp. 11, to appear.
    10. 10)
      • 126. Simmhan, Y., Aman, S., Kumbhare, A., et al: ‘Cloud-based software platform for big data analytics in smart grids’, Comput. Sci. Eng., 2013, 15, (4), pp. 3847.
    11. 11)
      • 32. SunGard: ‘Big data – challenges and opportunities for the energy industry’. White paper, 2013.
    12. 12)
      • 174. Ross, K.J., Hopkinson, K.M., Pachter, M.: ‘Using a distributed agent-based communication enabled special protection system to enhance smart grid security’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 12161224.
    13. 13)
      • 67. Yigit, M., Gungor, V.C., Baktir, S.: ‘Cloud computing for smart grid applications’, Comput. Netw., 2014, 70, pp. 312329.
    14. 14)
      • 42. GE: ‘Predix: the industrial internet platform’. White paper, November 2016.
    15. 15)
      • 7. Sharma, S.K., Wang, X.: ‘Live data analytics with collaborative edge and cloud processing in wireless IoT networks’, IEEE Access, 2017, 5, pp. 46214635.
    16. 16)
      • 111. Tong, X., Kang, C., Xia, Q.: ‘Smart metering load data compression based on load feature identification’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 24142422.
    17. 17)
      • 139. Niu, Z., He, B., Liu, F.: ‘JouleMR: towards cost-effective and green-aware data processing frameworks’, IEEE Trans. Big Data, 2018, 4, (2), pp. 258272.
    18. 18)
      • 13. Bose, A.: ‘Smart transmission grid applications and their supporting infrastructure’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 1119.
    19. 19)
      • 97. Chaouch, M.: ‘Clustering-based improvement of nonparametric functional time series forecasting: application to intra-day household-level load curves’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 411419.
    20. 20)
      • 144. Singh, D., Reddy, C.K.: ‘A survey on platforms for big data analytics’, J. Big. Data., 2015, 2, (1), p. 8.
    21. 21)
      • 109. Monti, A., Ponci, F.: ‘Power grids of the future: why smart means complex’. Proc. IEEE Complexity in Engineering, 2010, pp. 711.
    22. 22)
      • 56. Liu, H., Ning, H., Zhang, Y., et al: ‘Aggregated-proofs based privacy-preserving authentication for V2G networks in the smart grid’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 17221733.
    23. 23)
      • 55. Rastogi, V., Nath, S.: ‘Differentially private aggregation of distributed time series with transformation and encryption’. Proc. SIGMOD Int. Conf. on Management of Data, 2010, pp. 735746.
    24. 24)
      • 50. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: ‘Evaluating probabilistic queries over imprecise data’. Proc. SIGMOD Int. Conf. on Management of Data, 2003, pp. 551562.
    25. 25)
      • 57. Markovic, D.S., Zivkovic, D., Branovic, I., et al: ‘Smart power grid and cloud computing’, Renew. Sustain. Energy Rev., 2013, 24, pp. 566577.
    26. 26)
      • 114. Dahal, N., King, R.L., Madani, V.: ‘Online dimension reduction of synchrophasor data’. Proc. IEEE Transmission and Distribution Conf. and Exposition (T&D), 2012, pp. 17.
    27. 27)
      • 90. Prostejovsky, A.M., Gehrke, O., Kosek, A.M., et al: ‘Distribution line parameter estimation under consideration of measurement tolerances’, IEEE Trans. Ind. Inf., 2016, 12, (2), pp. 726735.
    28. 28)
      • 38. C. E. Association: ‘Electric utility innovation toward vision 2050’. Technical report, 2015.
    29. 29)
      • 160. Sun, H., Wang, Z., Wang, J., et al: ‘Data-driven power outage detection by social sensors’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 25162524.
    30. 30)
      • 62. Tao, Y., Papadias, D.: ‘The MV3R-tree: a spatio-temporal access method for timestamp and interval queries’. Proc. Very Large Data Bases Conf. (VLDB), Rome, 11–14 September 2001.
    31. 31)
      • 30. Jiang, H., Wang, K., Wang, Y., et al: ‘Energy big data: a survey’, IEEE Access, 2016, 4, pp. 38443861.
    32. 32)
      • 43. G. Electric: ‘The role of big data visualization and analytics in the utility industry’. Available at http://www.electricenergyonline.com/show_article.php?mag=92&article=750, accessed 2017.
    33. 33)
      • 122. Green, R.C., Wang, L., Alam, M.: ‘Applications and trends of high performance computing for electric power systems: focusing on smart grid’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 922931.
    34. 34)
      • 49. Zomaya, A.Y., Lee, Y.C.: ‘Energy efficient distributed computing systems’, vol. 88 (John Wiley & Sons, Hoboken, 2012).
    35. 35)
      • 28. Haase, P.: ‘Intelligrid: a smart network of power’, EPRI J., 2005, pp. 2632.
    36. 36)
      • 85. Usman, M.U., Faruque, M.O.: ‘Validation of a PMU-based fault location identification method for smart distribution network with photovoltaics using real-time data’, IET Gener. Transm. Distrib., 2018, 12, (21), pp. 58245833.
    37. 37)
      • 60. Sciacca, S.: ‘Big data and the need for improved time synchronization standards’. Available at http://m.csemag.com/articlepage/big-data-and-the-need-for-improved-timesynchronization-standards/8c0cd0612438905a2e12ab5fb7e4dad4.html, accessed 19 September 2012.
    38. 38)
      • 156. Simmhan, Y., Aman, S., Cao, B., et al: ‘An informatics approach to demand response optimization in smart grids’. Tech. Rep., City of Los Angeles Department, 2011.
    39. 39)
      • 80. Singh, S., Yassine, A.: ‘Mining energy consumption behavior patterns for households in smart grid’, IEEE Trans. Emerging Top. Comput., 2018, pp. 11, to appear.
    40. 40)
      • 161. Chen, P.-C., Dokic, T., Kezunovic, M.: ‘The use of big data for outage management in distribution systems’. Proc. Int. Conf. on Electricity Distribution (CIRED) Workshop, 2014.
    41. 41)
      • 72. Leeds, D.J.: ‘The soft grid 2013–2020: big data & utility analytics for smart grid’ (GTM Research, Cary, USA, 2012).
    42. 42)
      • 21. Zinaman, O., Miller, M., Adil, A., et al: ‘Power systems of the future’, Electr. J., 2015, 28, (2), pp. 113126.
    43. 43)
      • 129. Harvey, C., Rosen, S., Ramsey, J., et al: ‘Computationally and statistically efficient model fitting techniques’, J. Stat. Comput. Simul., 2017, 87, (1), pp. 123137.
    44. 44)
      • 103. Sui, Z., Niedermeier, M., de meer, H.: ‘TAI: a threshold-based anonymous identification scheme for demand-response in smart grids’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 34963506.
    45. 45)
      • 167. Capitanescu, F., Ramos, J.M., Panciatici, P., et al: ‘State-of-the-art, challenges, and future trends in security constrained optimal power flow’, Electr. Power Syst. Res., 2011, 81, (8), pp. 17311741.
    46. 46)
      • 117. Mohamed, N., Lazarova-Molnar, S., Jawhar, I., et al: ‘Towards service-oriented middleware for fog and cloud integrated cyber physical systems’. Proc. IEEE 37th Int. Conf. on Distributed Computing Systems Workshops (ICDCSW), 2017, pp. 6774.
    47. 47)
      • 147. Kwac, J., Rajagopal, R.: ‘Demand response targeting using big data analytics’. Proc. IEEE Int. Conf. on Big Data, 2013, pp. 683690.
    48. 48)
      • 20. Garrity, T.F.: ‘Getting smart’, IEEE Power Energy Mag., 2008, 6, (2), pp. 3845.
    49. 49)
      • 123. Bera, S., Misra, S., Rodrigues, J.J.: ‘Cloud computing applications for smart grid: a survey’, IEEE Trans. Parallel Distrib. Syst., 2015, 26, (5), pp. 14771494.
    50. 50)
      • 137. B. Data: ‘Analytics reference architecture’. An Oracle White Paper, September 2013.
    51. 51)
      • 41. Siemens: ‘Siemens EnergyIp application platform: maximize the return on your smart grid investment’. Available at http://w3.siemens.com/smartgrid/global/en/productssystems-solutions/smart-metering/emeter/pages/energyip-platform.aspx.
    52. 52)
      • 127. Ma, F., Luo, X., Litvinov, E.: ‘Cloud computing for power system simulations at ISO new England – experiences and challenges’, IEEE Trans. Smart Grid, 2016, 7, (6), pp. 25962603.
    53. 53)
      • 89. Jokar, P., Arianpoo, N., Leung, V.C.: ‘Electricity theft detection in AMI using customers’ consumption patterns’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 216226.
    54. 54)
      • 135. Mishra, S.: ‘Survey of big data architecture and framework from the industry’ (NIST Big data Public Working Group, Gaithersburg, USA, 2015).
    55. 55)
      • 157. Chelmis, C., Kolte, J., Prasanna, V.K.: ‘Big data analytics for demand response: clustering over space and time’. Proc. IEEE Int. Conf. on Big Data (Big Data), October 2015, pp. 22232232.
    56. 56)
      • 163. Wang, B., Fang, B., Wang, Y., et al: ‘Power system transient stability assessment based on big data and the core vector machine’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 25612570.
    57. 57)
      • 12. Hong, T.: ‘Big data analytics: making the smart grid smarter [Guest Editorial]’, IEEE Power Energy Mag., 2018, 16, (3), pp. 1216.
    58. 58)
      • 100. Naeem, A., Shabbir, A., Hassan, N.U., et al: ‘Understanding customer behavior in multi-tier demand response management program’, IEEE Access, 2015, 3, pp. 26132625.
    59. 59)
      • 2. E. I. Lab: ‘Big data in banking for marketers how to derive value from big data’. White Paper, 2015.
    60. 60)
      • 143. Hadoop: ‘What is Apache Hadoop’. Available at http://hadoop.apache.org/, accessed January 2019.
    61. 61)
      • 165. Zhou, Y., Arghandeh, R., Spanos, C.J.: ‘Partial knowledge data-driven event detection for power distribution networks’, IEEE Trans. Smart Grid, 2018, 9, (5), pp. 51525162.
    62. 62)
      • 5. Marjani, M., Nasaruddin, F., Gani, A., et al: ‘Big IoT data analytics: architecture, opportunities, and open research challenges’, IEEE Access, 2017, 5, pp. 52475261.
    63. 63)
      • 140. Pal, A., Agrawal, S.: ‘An experimental approach towards big data for analyzing memory utilization on a Hadoop cluster using HDFS and MapReduce’. Proc. IEEE First Int. Conf. on Networks & Soft Computing (ICNSC), 2014, pp. 442447.
    64. 64)
      • 92. Wenli, F., Xuemin, Z., Shengwei, M., et al: ‘Vulnerable transmission line identification using ISH theory in power grids’, IET Gener. Transm. Distrib., 2017, 12, (4), pp. 10141020.
    65. 65)
      • 107. Zhou, K.-l., Yang, S.-l., Shen, C.: ‘A review of electric load classification in smart grid environment’, Renew. Sustain. Energy Rev., 2013, 24, pp. 103110.
    66. 66)
      • 59. He, D., Kumar, N., Zeadally, S., et al: ‘Efficient and privacy-preserving data aggregation scheme for smart grid against internal adversaries’, IEEE Trans. Smart Grid, 2017, 8, pp. 24112419.
    67. 67)
      • 44. GE: ‘Grid IQ insight: translating data to actionable intelligence for empowered decision making’. Available at https://www.gegridsolutions.com/uos/catalog/grid-iq-insight.htm, accessed 2014.
    68. 68)
      • 175. Touhiduzzaman, M., Hahn, A., Srivastava, A.: ‘A diversity-based substation cyber defense strategy utilizing coloring games’, arXiv preprint arXiv:1802.02618, 2018.
    69. 69)
      • 77. Tahmassebpour, M.: ‘A new method for time-series big data effective storage’, IEEE Access, 2017, 5, pp. 1069410699.
    70. 70)
      • 113. Martins, A.D., Gurjão, E.C.: ‘Processing of smart meters data based on random projections’. Proc. IEEE Innovative Smart Grid Technologies Latin America (ISGT LA), 2013, pp. 14.
    71. 71)
      • 108. Macedo, M., Galo, J., De Almeida, L., et al: ‘Demand side management using artificial neural networks in a smart grid environment’, Renew. Sustain. Energy Rev., 2015, 41, pp. 128133.
    72. 72)
      • 138. Vaidya, M., Deshpande, S.: ‘Distributed data management in energy sector using Hadoop’. Proc. IEEE Bombay Section Symp. (IBSS), 2015, pp. 16.
    73. 73)
      • 166. Moghaddass, R., Wang, J.: ‘A hierarchical framework for smart grid anomaly detection using large-scale smart meter data’, IEEE Trans. Smart Grid, 2018, 9, (6), pp. 58205830.
    74. 74)
      • 173. Chu, L., Qiu, R., He, X., et al: ‘Massive streaming PMU data modelling and analytics in smart grid state evaluation based on multiple high-dimensional covariance test’, IEEE Trans. Big Data, 2018, 4, (1), pp. 5564.
    75. 75)
      • 102. Wang, Y., Chen, Q., Kang, C., et al: ‘Sparse and redundant representation-based smart meter data mmm compression and pattern extraction’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 21422151.
    76. 76)
      • 25. Callahan, S.: ‘Big data: the future of energy and utilities’. Available at https://www.rdmag.com/article/2015/10/big-data-future-energy-and-utilities, accessed 5 October 2015.
    77. 77)
      • 154. Cao, Y., Song, H., Kaiwartya, O., et al: ‘Mobile edge computing for big-data-enabled electric vehicle charging’, IEEE Commun. Mag., 2018, 56, (3), pp. 150156.
    78. 78)
      • 130. Khosravi, A., Nahavandi, S., Creighton, D.: ‘Quantifying uncertainties of neural network-based electricity price forecasts’, Appl. Energy, 2013, 112, pp. 120129.
    79. 79)
      • 164. Jiang, T., Mu, Y., Jia, H., et al: ‘A novel dominant mode estimation method for analyzing inter-area oscillation in China southern power grid’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 25492560.
    80. 80)
      • 168. Ardakani, A.J., Bouffard, F.: ‘Identification of umbrella constraints in DC-based security-constrained optimal power flow’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 39243934.
    81. 81)
      • 58. Qi, J., Hahn, A., Lu, X., et al: ‘Cybersecurity for distributed energy resources and smart inverters’, IET Cyber-Phys. Syst., Theor. Appl., 2016, 1, (1), pp. 2839.
    82. 82)
      • 22. Dijcks, J.-P.: ‘Oracle: big data for the enterprise’. Oracle White Paper, 2012.
    83. 83)
      • 29. Mastelic, T., Oleksiak, A., Claussen, H., et al: ‘Cloud computing: survey on energy efficiency’, ACM Comput. Surv., 2015, 47, (2), p. 33.
    84. 84)
      • 4. Islam, M.M., Razzaque, M.A., Hassan, M.M., et al: ‘Mobile cloud-based big healthcare data processing in smart cities’, IEEE Access, 2017, 5, pp. 1188711899.
    85. 85)
      • 151. Agarwal, A., Balance, J., Bhargava, B., et al: ‘Real time dynamics monitoring system (RTDMS) for use with synchrophasor technology in power systems’. Proc. IEEE Power and Energy Society General Meeting, July 2011, pp. 18.
    86. 86)
      • 91. Azzouz, M.A., El-Saadany, E.F.: ‘Multivariable grid admittance identification for impedance stabilization of active distribution networks’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 11161128.
    87. 87)
      • 39. Dong, H., Singh, G., Attri, A., et al: ‘Open data-set of seven Canadian cities’, IEEE Access, 2017, 5, pp. 529543.
    88. 88)
      • 148. Wang, Y., Chen, Q., Hong, T., et al: ‘Review of smart meter data analytics: applications, methodologies, and challenges’, IEEE Trans. Smart Grid, 2018, p. 1, to appear.
    89. 89)
      • 84. Jiang, H., Dai, X., Gao, D.W., et al: ‘Spatial-temporal synchrophasor data characterization and analytics in smart grid fault detection, identification, and impact causal analysis’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 25252536.
    90. 90)
      • 162. Kezunovic, M., Xie, L., Grijalva, S.: ‘The role of big data in improving power system operation and protection’. 2013 IREP Symp. Bulk Power System Dynamics and Control – IX Optimization, Security and Control of the Emerging Power Grid, August 2013, pp. 19.
    91. 91)
      • 46. Chavero, M.: ‘New smart asset management strategies in TSO industry enabled by a real-time data infrastructure’. White paper, 2016.
    92. 92)
      • 172. Zhang, X., Grijalva, S.: ‘A data-driven approach for detection and estimation of residential PV installations’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 24772485.
    93. 93)
      • 181. Chen, X.-W., Lin, X.: ‘Big data deep learning: challenges and perspectives’, IEEE Access, 2014, 2, pp. 514525.
    94. 94)
      • 132. Stewart, E.M., Kiliccote, S., Shand, C., et al: ‘Addressing the challenges for integrating micro-synchrophasor data with operational system applications’. Proc. IEEE PES General Meeting| Conf. & Exposition, 2014, pp. 15.
    95. 95)
      • 76. Wang, Y., Deng, Q., Liu, W., et al: ‘A data-centric storage approach for efficient query of large-scale smart grid’. Proc. IEEE Ninth Web Information Systems and Applications Conf. (WISA), 2012, pp. 193197.
    96. 96)
      • 9. Sun, Y., Song, H., Jara, A.J., et al: ‘Internet of things and big data analytics for smart and connected communities’, IEEE Access, 2016, 4, pp. 766773.
    97. 97)
      • 136. Ferguson, M.: ‘Architecting a big data platform for analytics’. A Whitepaper prepared for IBM, 2012, vol. 30.
    98. 98)
      • 180. Pecan Street Dataport. Available at https://dataport.cloud/.
    99. 99)
      • 33. Asad, Z., Chaudhry, M.A.R.: ‘A two-way street: green big data processing for a greener smart grid’, IEEE Syst. J., 2017, 11, (2), pp. 784795.
    100. 100)
      • 24. Chen, S., Wei, Z., Sun, G., et al: ‘Identifying optimal energy flow solvability in electricity-gas integrated energy systems’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 846854.
    101. 101)
      • 23. Stimmel, C.L.: ‘Big data analytics strategies for the smart grid’ (CRC Press, Boca Raton, 2014).
    102. 102)
      • 34. SWECO: ‘Smart grid and big data analytics’. Technical report, 2015.
    103. 103)
      • 133. Liu, F., Tong, J., Mao, J., et al: ‘NIST cloud computing reference architecture’, NIST Spec. Publ., 2011, 500, (2011), p. 292.
    104. 104)
      • 82. Gu, B., Sheng, V.S.: ‘A robust regularization path algorithm for v -support vector classification’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (5), pp. 12411248.
    105. 105)
      • 125. Ghamkhari, M., Mohsenian-Rad, H.: ‘Energy and performance management of green data centers: a profit maximization approach’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 10171025.
    106. 106)
      • 159. Perez-Chacon, R., Luna-Romera, J.M., Troncoso, A., et al: ‘Big data analytics for discovering electricity consumption patterns in smart cities’, Energies, 2018, 11, (3), p. 983.
    107. 107)
      • 121. Shvachko, K., Kuang, H., Radia, S., et al: ‘The Hadoop distributed file system’. Proc. IEEE 26th Symp. on Mass Storage Systems and Technologies (MSST), 2010, pp. 110.
    108. 108)
      • 48. Zhou, D., Guo, J., Zhang, Y., et al: ‘Distributed data analytics platform for wide-area synchrophasor measurement systems’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 23972405.
    109. 109)
      • 83. Pignati, M., Zanni, L., Romano, P., et al: ‘Fault detection and faulted line identification in active distribution networks using synchrophasors-based real-time state estimation’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 381392.
    110. 110)
      • 88. Jiang, Y., Liu, C.-C., Diedesch, M., et al: ‘Outage management of distribution systems incorporating information from smart meters’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 41444154.
    111. 111)
      • 61. Zhao, J., Zhang, G., Das, K., et al: ‘Power system real-time monitoring by using PMU-based robust state estimation method’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 300309.
    112. 112)
      • 11. Wedgwood, K., Howard, R.: ‘Big data and analytics in travel and transportation’. IBM Big Data and Analytics White Paper, 2014.
    113. 113)
      • 115. Xing, E.P., Ho, Q., Dai, W., et al: ‘Petuum: a new platform for distributed machine learning on big data’, IEEE Trans. Big Data, 2015, 1, (2), pp. 4967.
    114. 114)
      • 51. Tsang, S., Kao, B., Yip, K.Y., et al: ‘Decision trees for uncertain data’, IEEE Trans. Knowl. Data Eng., 2011, 23, (1), pp. 6478.
    115. 115)
      • 36. Johnson, J.R.: ‘How four U.S. utilities are tackling big data’, 2014. Available at http://www.energycentral.com/c/iu/how-four-us-utilities-are-tackling-big-data.
    116. 116)
      • 178. Touhiduzzaman, M., Hahn, A., Srivastava, A.: ‘Arcades: analysis of risk from cyber attack against defensive strategies for power grid’, IET Cyber-Phys. Syst., Theor. Appl., 2018, 3, (3), pp. 119128.
    117. 117)
      • 158. Jindal, A., Kumar, N., Singh, M.: ‘A unified framework for big data acquisition, storage, and analytics for demand response management in smart cities’, Future Gener. Comput. Syst., 2018, pp. 114, to appear.
    118. 118)
      • 128. Fang, B., Yin, X., Tan, Y., et al: ‘The contributions of cloud technologies to smart grid’, Renew. Sustain. Energy Rev., 2016, 59, pp. 13261331.
    119. 119)
      • 149. Fallah, S.N., Deo, R.C., Shojafar, M., et al: ‘Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions’, Energies, 2018, 11, (3), p. 596.
    120. 120)
      • 35. Pancholi, S.: ‘Solving big data challenges us electric utility industry’. PES General Meeting Presentation, 2014.
    121. 121)
      • 98. Shi, H., Xu, M., Li, R.: ‘Deep learning for household load forecasting – a novel pooling deep RNN’, IEEE Trans. Smart Grid, 2018, 9, (5), pp. 52715280.
    122. 122)
      • 96. Weng, Y., Liao, Y., Rajagopal, R.: ‘Distributed energy resources topology identification via graphical modeling’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 26822694.
    123. 123)
      • 131. Schütte, S., Scherfke, S., Tröschel, M.: ‘Mosaik: a framework for modular simulation of active components in smart grids’. Proc. IEEE First Int. Workshop on Smart Grid Modeling and Simulation (SGMS), 2011, pp. 5560.
    124. 124)
      • 86. Hosseini, Z.S., Mahoor, M., Khodaei, A.: ‘AMI-enabled distribution network line outage identification via multi-label SVM’, IEEE Trans. Smart Grid, 2018, 9, (5), pp. 54705472.
    125. 125)
      • 45. ABB: ‘Using smart grid data to power end-to-end asset management’. White paper, 2011.
    126. 126)
      • 104. Ukil, A., Zivanovic, R.: ‘Automated analysis of power systems disturbance records: smart grid big data perspective’. Proc. IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), 2014, pp. 126131.
    127. 127)
      • 95. Pappu, S.J., Bhatt, N., Pasumarthy, R., et al: ‘Identifying topology of low voltage distribution networks based on smart meter data’, IEEE Trans. Smart Grid, 2018, 9, (5), pp. 51135122.
    128. 128)
      • 69. Giani, A., Bitar, E., Garcia, M., et al: ‘Smart grid data integrity attacks’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 12441253.
    129. 129)
      • 120. Akusok, A., Björk, K.-M., Miche, Y., et al: ‘High-performance extreme learning machines: a complete toolbox for big data applications’, IEEE Access, 2015, 3, pp. 10111025.
    130. 130)
      • 26. Dong, Z., Zhang, P.: ‘Emerging techniques in power system analysis’ (Springer, Berlin, 2010).
    131. 131)
      • 3. Srinivasan, U., Arunasalam, B.: ‘Leveraging big data analytics to reduce healthcare costs’, IT Prof., 2013, 15, (6), pp. 2128.
    132. 132)
      • 79. Huang, D., Zareipour, H., Rosehart, W.D., et al: ‘Data mining for electricity price classification and the application to demand-side management’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 808817.
    133. 133)
      • 15. Heydt, G.T.: ‘The next generation of power distribution systems’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 225235.
    134. 134)
      • 177. Ahmed, A., Krishnan, V., Foroutan, S., et al: ‘Cyber physical security analytics for anomalies in transmission protection systems’. 2018 IEEE Industry Applications Society Annual Meeting (IAS), 2018, pp. 18.
    135. 135)
      • 17. Zhou, K., Fu, C., Yang, S.: ‘Big data driven smart energy management: from big data to big insights’, Renew. Sustain. Energy Rev., 2016, 56, pp. 215225.
    136. 136)
      • 75. Bansal, S.K.: ‘Towards a semantic extract-transform-load (ETL) framework for big data integration’. Proc. IEEE Int. Congress on Big Data (BigData Congress), 2014, pp. 522529.
    137. 137)
      • 6. Satyanarayanan, M., Simoens, P., Xiao, Y., et al: ‘Edge analytics in the internet of things’, IEEE Pervasive Comput., 2015, 14, (2), pp. 2431.
    138. 138)
      • 116. D'Elia, A., Viola, F., Montori, F., et al: ‘Impact of interdisciplinary research on planning, running, and managing electromobility as a smart grid extension’, IEEE Access, 2015, 3, pp. 22812305.
    139. 139)
      • 110. Sancho-Asensio, A., Navarro, J., Arrieta-Salinas, I., et al: ‘Improving data partition schemes in smart grids via clustering data streams’, Expert Syst. Appl., 2014, 41, (13), pp. 58325842.
    140. 140)
      • 176. Vellaithurai, C., Srivastava, A., Zonouz, S., et al: ‘CPIndex: cyberphysical vulnerability assessment for power-grid infrastructures’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 566575.
    141. 141)
      • 112. de Souza, J.C.S., Assis, T.M.L., Pal, B.C.: ‘Data compression in smart distribution systems via singular value decomposition’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 275284.
    142. 142)
      • 78. Wang, Y., Chen, Q., Kang, C., et al: ‘Clustering of electricity consumption behavior dynamics toward big data applications’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 24372447.
    143. 143)
      • 68. Rusitschka, S., Eger, K., Gerdes, C.: ‘Smart grid data cloud: a model for utilizing cloud computing in the smart grid domain’. Proc. First Int. Conf. on Smart Grid Communications (SmartGridComm), 2010, pp. 483488.
    144. 144)
      • 99. Gulbinas, R., Khosrowpour, A., Taylor, J.: ‘Segmentation and classification of commercial building occupants by energy-use efficiency and predictability’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 14141424.
    145. 145)
      • 54. Kalogridis, G., Efthymiou, C., Denic, S.Z., et al: ‘Privacy for smart meters: towards undetectable appliance load signatures’. Proc. First IEEE Int. Conf. on Smart Grid Communications (SmartGridComm), 2010, pp. 232237.
    146. 146)
      • 124. Lee, Y.C., Zomaya, A.Y.: ‘Energy conscious scheduling for distributed computing systems under different operating conditions’, IEEE Trans. Parallel Distrib. Syst., 2011, 22, (8), pp. 13741381.
    147. 147)
      • 47. Xie, L., Chen, Y., Kumar, P.R.: ‘Dimensionality reduction of synchrophasor data for early event detection: linearized analysis’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 27842794.
    148. 148)
      • 155. Yassine, A., Singh, S., Alamri, A.: ‘Mining human activity patterns from smart home big data for healthcare applications’, IEEE Access, 2017, 5, pp. 1313113141.
    149. 149)
      • 73. Tonyali, S., Akkaya, K., Saputro, N., et al: ‘A reliable data aggregation mechanism with homomorphic encryption in smart grid AMI networks’. Proc. IEEE 13th Annual Consumer Communications & Networking Conf. (CCNC), 2016, pp. 550555.
    150. 150)
      • 118. Nguyen, K.-K., Cheriet, M.: ‘Virtual edge-based smart community network management’, IEEE Internet Comput., 2016, 20, (6), pp. 3241.
    151. 151)
      • 105. Zhang, R.: at‘Big data analytics for smart grid-forecast, predict for a smarter grid’.
    152. 152)
      • 169. Peppanen, J., Reno, M.J., Broderick, R.J., et al: ‘Distribution system model calibration with big data from AMI and PV inverters’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 24972506.
    153. 153)
      • 119. Mallik, R., Sarda, N., Kargupta, H., et al: ‘Distributed data mining for sustainable smart grids’. Proc. ACM SustKDD, 2011, vol. 11, pp. 16.
    154. 154)
      • 146. Maharjan, S., Zhu, Q., Zhang, Y., et al: ‘Dependable demand response management in the smart grid: a Stackelberg game approach’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 120132.
    155. 155)
      • 141. Chintapalli, S., Dagit, D., Evans, B., et al: ‘Benchmarking streaming computation engines: Storm, Flink and Spark streaming’. Proc. IEEE Int. Parallel and Distributed Processing Symp. Workshops, 2016, pp. 17891792.
    156. 156)
      • 171. Shaker, H., Zareipour, H., Wood, D.: ‘A data-driven approach for estimating the power generation of invisible solar sites’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 24662476.
    157. 157)
      • 71. McGranaghan, M., Houseman, D., Schmitt, L., et al: ‘Enabling the integrated grid: leveraging data to integrate distributed resources and customers’, IEEE Power Energy Mag., 2016, 14, (1), pp. 8393.
    158. 158)
      • 27. Hu, J., Vasilakos, A.V.: ‘Energy big data analytics and security: challenges and opportunities’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 24232436.
    159. 159)
      • 52. Wagstaff, K.: ‘Machine learning that matters’, arXiv preprint arXiv:1206.4656, 2012.
    160. 160)
      • 1. Trelewicz, J.Q.: ‘Big data and big money: the role of data in the financial sector’, IT Prof., 2017, 19, (3), pp. 810.
    161. 161)
      • 87. Ahmed, A., Awais, M., Naeem, M., et al: ‘Multiple power line outage detection in smart grids: probabilistic Bayesian approach’, IEEE Access, 2018, 6, pp. 1065010661.
    162. 162)
      • 94. Cavraro, G., Kekatos, V.: ‘Graph algorithms for topology identification using power grid probing’, arXiv preprint arXiv:1803.04506, 2018.
    163. 163)
      • 31. Hebner, R.: ‘Nanogrids, microgrids, and big data: the future of the power grid’. Available at http://spectrum.ieee.org/energy/renewables/nanogrids-microgrids-and-bigdata-the-future-of-the-power-grid, accessed 31 March 2017.
    164. 164)
      • 93. Babakmehr, M., Simões, M.G., Wakin, M.B., et al: ‘Compressive sensing-based topology identification for smart grids’, IEEE Trans. Ind. Inf., 2016, 12, (2), pp. 532543.
    165. 165)
      • 66. Kamel, I., Faloutsos, C.: ‘Hilbert R-tree: an improved R-tree using fractals’. Tech. Rep., 1993.
    166. 166)
      • 65. Kothuri, R.K.V., Ravada, S., Abugov, D.: ‘Quadtree and R-tree indexes in oracle spatial: a comparison using GIS data’. Proc. SIGMOD Int. Conf. on Management of Data, 2002, pp. 546557.
    167. 167)
      • 153. Marinakis, V., Doukas, H., Tsapelas, J., et al: ‘From big data to smart energy services: an application for intelligent energy management’, Future Gener. Comput. Syst., 2018, pp. 115, to appear.
    168. 168)
      • 74. Zhu, W., Guo, Q.: ‘Data security and encryption technology research on smart grid communication system’. Proc. IEEE Eighth Int. Conf. on Measuring Technology and Mechatronics Automation (ICMTMA), 2016, pp. 175178.
    169. 169)
      • 142. Apache: ‘Apache drill – schema-free SQL for Hadoop, NoSQL and cloud storage’. Available at http://drill.apache.org/, accessed 17 June 2017.
    170. 170)
      • 170. Shaker, H., Zareipour, H., Wood, D.: ‘Estimating power generation of invisible solar sites using publicly available data’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 24562465.
    171. 171)
      • 18. Yu, N., Shah, S., Johnson, R., et al: ‘Big data analytics in power distribution systems’. Proc. IEEE Power Energy Society Innovative Smart Grid Technologies Conf. (ISGT), February 2015, pp. 15.
    172. 172)
      • 152. Diamantoulakis, P.D., Kapinas, V.M., Karagiannidis, G.K.: ‘Big data analytics for dynamic energy management in smart grids’, Big Data Res., 2015, 2, (3), pp. 94101.
    173. 173)
      • 19. Kim, Y.J., Thottan, M., Kolesnikov, V., et al: ‘A secure decentralized data-centric information infrastructure for smart grid’, IEEE Commun. Mag., 2010, 48, (11), pp. 5865.
    174. 174)
      • 101. He, D., Du, L., Yang, Y., et al: ‘Front-end electronic circuit topology analysis for model-driven classification and monitoring of appliance loads in smart buildings’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 22862293.
    175. 175)
      • 70. Ruj, S., Pal, A.: ‘Analyzing cascading failures in smart grids under random and targeted attacks’. Proc. IEEE 28th Int. Conf. on Advanced Information Networking and Applications (AINA), 2014, pp. 226233.
    176. 176)
      • 40. Siemens: ‘EnergyIp – a flexible, scalable platform for MDM and more’. Available at http://w3.usa.siemens.com/smartgrid/us/en/smart-metering/energyip-mdmsplatform/pages/energyip.aspx.
    177. 177)
      • 106. Pandey, R., Dhoundiyal, M., Kumar, A.: ‘Correlation analysis of big data to support machine learning’. Proc. IEEE Fifth Int. Conf. on Communication Systems and Network Technologies (CSNT), 2015, pp. 996999.
    178. 178)
      • 150. Tureczek, A., Nielsen, P.S., Madsen, H.: ‘Electricity consumption clustering using smart meter data’, Energies, 2018, 11, (4), p. 859.
    179. 179)
      • 37. C. Consulting: ‘Big data blackout: are utilities powering up their data analytics?’. Technical report, 2015.
    180. 180)
      • 8. He, X., Ai, Q., Qiu, R.C., et al: ‘A big data architecture design for smart grids based on random matrix theory’, IEEE Trans. Smart Grid, 2017, 8, (2), pp. 674686.
    181. 181)
      • 179. Mayilvaganan, M., Sabitha, M.: ‘A cloud-based architecture for big-data analytics in smart grid: a proposal’. Proc. IEEE Int. Conf. on Computational Intelligence and Computing Research (ICCIC), 2013, pp. 14.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0261
Loading

Related content

content/journals/10.1049/iet-stg.2018.0261
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address