access icon openaccess Survey on time-domain power theories and their applications for renewable energy integration in smart-grids

The increasing aggregation of renewable-based distributed generating units besides the impressive growing usage of non-linear loads raises unwanted challenges for traditional power terms definition in power engineering. This fact consequently affected the performance of the conventional control frameworks and industrial compensation techniques. In this study, the authors aim to provide an insightful summary over the most recognised time domain-based instantaneous power theories and discuss their advantages and disadvantages within a comprehensive mathematical-conceptual and applicational framework for professionals who are using instantaneous power theories within the smart grid applications. They conclude that there is still a need for a modified power theory which can be validated under non-sinusoidal-unbalanced load/source conditions respecting the physical meaning of different power and current components.

Inspec keywords: distributed power generation; smart power grids; renewable energy sources; time-domain analysis

Other keywords: conventional control frameworks; modified power theory; traditional power terms definition; time domain-based instantaneous power theories; nonsinusoidal-unbalanced source condition; nonsinusoidal-unbalanced load condition; renewable energy integration; smart grid applications; comprehensive mathematical-conceptual framework; comprehensive applicational framework; power engineering; industrial compensation techniques

Subjects: Distributed power generation; Mathematical analysis; Energy resources

References

    1. 1)
      • 4. Peng, F.Z., Ott, G.W., Adams, D.J.: ‘Harmonic and reactive power compensation based on the generalized instantaneous reactive power theory for three-phase four-wire systems’, IEEE Trans. Power Electron., 1998, 13, (6), pp. 11741181.
    2. 2)
      • 69. Harirchi, F., Simões, M.G., Babakmehr, M., et al: ‘Multi-functional double mode inverter for power quality enhancement in smart-grid applications’. 2016 IEEE Industry Applications Society Annual Meeting, Portland, OR, 2016, pp. 18.
    3. 3)
      • 17. Depenbrock, M.: ‘The FBD method, a generally applicable tool for analyzing power relations’, IEEE Trans. Power Syst., 1993, 8, (2), pp. 381387.
    4. 4)
      • 1. Babakmehr, M., Simões, M.G., Wakin, M.B., et al: ‘Compressive sensing-based topology identification for smart grids’, IEEE Trans. Ind. Inf., 2016, 12, (2), pp. 532543.
    5. 5)
      • 14. Furuhashi, T., Okuma, S., Uchikawa, Y.: ‘A study on the theory of instantaneous reactive power’, IEEE Trans. Ind. Electron., 1990, 37, (1), pp. 8690.
    6. 6)
      • 63. Qiong, C., Jianyong, Z.: ‘The application of FBD current examination method in the three-phase power system’. 27th Chinese Control Conf., Kunming, China, July 2008, pp. 232235.
    7. 7)
      • 79. Souza, W.A., Liberado, E.V., da Silva, L.C.P., et al: ‘Load analyser using conservative power theory’. Int. School on Nonsinusoidal Currents and Compensation 2013 (ISNCC 2013), Zielona Gora, 2013, pp. 16.
    8. 8)
      • 82. Al-bayaty, H., Ambroze, M., Ahmed, M.Z.: ‘New effective power terms and right-angled triangle (RAT) power theory’, Int. J. Electr. Power Energy Syst., 2017, 88, pp. 133140.
    9. 9)
      • 73. Burgos-Mellado, C., Cardenas, R., Saez, D., et al: ‘A control algorithm based on the conservative power theory for cooperative sharing of imbalances in four-wire systems’, IEEE Trans. Power Electron., 2019, 34, (6), pp. 53255339.
    10. 10)
      • 8. Shepherd, W., Zakikhani, P.: ‘Suggested definition of reactive power for nonsinusoidal systems’, Proc. Inst. Electr. Eng., 1972, 119, (9), pp. 13611362.
    11. 11)
      • 39. Lev-Ari, H., Stankovic, A.M.: ‘A decomposition of apparent power in polyphase unbalanced networks in nonsinusoidal operation’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 438440.
    12. 12)
      • 51. Watanabe, E.H., Stephan, R.M., Aredes, M.: ‘New concept of instantaneous active and reactive powers in electrical systems with generic loads’, IEEE Trans. Power Deliv., 1993, 8, pp. 697703.
    13. 13)
      • 36. Ribeiro, M.V., Packets Reconstruction Proposals applied to Waveform Coding Techniques for VoIP Solution. IEEE Latin America Transactions, 2003, 1, (1), pp. 17.
    14. 14)
      • 66. Harirchi, F., Babakmehr, M., Simões, M.G.: ‘Three-phase instantaneous feature extraction for microgrid islanding detection using advance power theories and synchronized measurements’. IEEE Int. Conf. on Smart Grid Synchronized Measurements and Analytics - SGSMA, College Station, Texas, USA, May 20–23 2019.
    15. 15)
      • 5. Boteler, D.H.: ‘Geomagnetically induced currents: present knowledge and future research’, IEEE Trans. Power Deliv., 1994, 9, (1), pp. 5058.
    16. 16)
      • 23. Peng, F.Z., Lai, J.S.: ‘Generalized instantaneous reactive power theory for three-phase power systems’, IEEE Trans. Instrum. Meas., 1996, 45, (1), pp. 293297.
    17. 17)
      • 25. Li, G.Y.: ‘Definition of generalized instantaneous reactive power in dqo coordinates and its compensation’. Proc. Chinese Soc. Elect. Eng., Shanghai, China, May 1996, vol. 16, pp. 176179.
    18. 18)
      • 38. Emanuel, A.E.: ‘Poynting vector and the physical meaning of nonactive powers’, IEEE Trans. Instrum. Meas., 2005, 54, (4), pp. 14571462.
    19. 19)
      • 10. Page, C.H.: ‘Reactive power in nonsinusoidal situations’, IEEE Trans. Instrum. Meas., 1980, 29, (4), pp. 420423.
    20. 20)
      • 86. Paredes, H.K.M., Marafao, F.P., da Silva, L.C.P.: ‘A comparative analysis of FBD, PQ and CPT current decompositions – part I: three-phase, three-wire systems’. 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 2009, pp. 18.
    21. 21)
      • 55. Correa, J.M., Farret, F.A., Simoes, M.G.: ‘Application of a modified single-phase pq theory in the control of shunt and series active filters in a 400 Hz microgrid’. 2005 IEEE 36th Power Electronics Specialists Conf., Recife, 2005, pp. 25852591.
    22. 22)
      • 68. Harirchi, F., Simões, M.G., Babakmehr, M., et al: ‘Designing smart inverter with unified controller and smooth transition between grid-connected and islanding modes for microgrid application’. 2015 IEEE Industry Applications Society Annual Meeting, Addison, TX, 2015, pp. 17.
    23. 23)
      • 48. Emanuel, A.E.: ‘Powers in nonsinusoidal situations a review of definition and physical meaning’. IEEE - Power Engineering: Society Winter Meeting, Atlanta, Georgia, February 1990.
    24. 24)
      • 29. Yoon, W.-K., Devaney, M.J.: ‘Reactive power measurement using the wavelet transform’, IEEE Trans. Instrum. Meas., 2000, 49, (2), pp. 246252.
    25. 25)
      • 75. Souza, W.A., Marafão, F.P., Liberado, E.V., et al: ‘A NILM dataset for cognitive meters based on conservative power theory and pattern recognition techniques’, J. Control, Autom. Electr. Syst., 2018, 29, (6), pp. 742755.
    26. 26)
      • 2. Akagi, H., Kanazawa, Y., Nabae, A.: ‘Instantaneous reactive power compensators comprising switching devices without energy storage components’, IEEE Trans. Ind. Appl., 1984, IA-20, (3), pp. 625630.
    27. 27)
      • 78. Moreira, A.C., Paredes, H.K.M., de Souza, W.A., et al: ‘Intelligent expert system for power quality improvement under distorted and unbalanced conditions in three-phase AC microgrids’, IEEE Trans. Smart Grid, 2018, 9, (6), pp. 69516960.
    28. 28)
      • 87. Paredes, H.K.M., Marafao, F.P., da Silva, L.C.P.: ‘A comparative analysis of FBD, PQ and CPT current decompositions – part II: three-phase four-wire systems’. 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 2009, pp. 16.
    29. 29)
      • 47. Marques, G.D.: ‘A comparison of active power filter control methods in unbalanced and non-sinusoidal conditions’. Proc. 24th Annual Conf. IEEE Industrial Electronics Society, Aachen, Germany, 1998, vol. 1, pp. 444449.
    30. 30)
      • 18. Willems, J.L., Aeyels, D.: ‘New decomposition for 3-phase currents in power systems’, Proc. Inst. Electr. Eng., 1993, 140, (4), pp. 307310.
    31. 31)
      • 9. Sharon, D.: ‘Reactive-power definitions and power-factor improvement in nonlinear systems’, Proc. Inst. Electr. Eng., 1973, 120, (6), pp. 704.
    32. 32)
      • 12. Takahashi, I.: ‘Analysis of instantaneous current and power using space switching functions’. Proc. Conf. Rec. IEEE Power Eng. Syst., Kyoto, Japan, 1988, pp. 4249.
    33. 33)
      • 72. Chen, J., Yue, D., Shao, X., et al: ‘Control strategy for multi-functional grid-tied inverters based on conservative power theory’. 2018 37th Chinese Control Conf. (CCC), Wuhan, China, 2018, pp. 89048908.
    34. 34)
      • 3. Komatsu, Y., Kawabata, T.: ‘A control method of an active power filter where system voltage contains negative-phase-sequence component or zero-phase-sequence component’. PEDS Conf., Singapore, 1995, vol. 2, pp. 583586.
    35. 35)
      • 42. Czarnecki, L.S.: ‘On some misinterpretation of the instantaneous reactive power pq theory’, IEEE Trans. Power Electron., 2004, 19, (3), pp. 828836.
    36. 36)
      • 40. Czarnecki, L.S.: ‘‘Currents’ physical components (CPC): fundamental of power theory’. Przegląd Elektrotechniczny (Proc. of Electrical Engineering) R84, Lagow, Poland, 2008, no. 6, pp. 2837H.
    37. 37)
      • 20. Soares, V., Verdelho, P., Marques, G.D.: ‘A control method for active power filters under unbalanced nonsinusoidal conditions’. Power Electronics and Variable speed drives PEVD'96, Nottingham, UK, 23–25 September, pp. 120124.
    38. 38)
      • 44. Filipski, P.S., Baghzouz, Y., Cox, M.D.: ‘Discussion of power definitions contained in the IEEE dictionary’, IEEE Trans. Power Deliv., 1994, 9, (3), pp. 12371244.
    39. 39)
      • 31. Ghassemi, F.: ‘New apparent power and power factor with nonsinusoidal waveforms’. Presented at the IEEE Winter Meeting, Singapore, 2000.
    40. 40)
      • 61. Yu, J.R., Cao, Y.J., Guan, W.D.: ‘A new reference current detecting algorithm based on FBD method for active power filter’, J. Hunan Univ. Chin., 2011, 38, pp. 4550.
    41. 41)
      • 24. Arseneau, R., Baghzouz, Y., Belanger, J., et al: ‘Practical definitions for power systems with nonsinusoidal waveforms and unbalanced loads: a discussion’, IEEE Trans. Power Deliv., 1996, 11, (1), pp. 79101.
    42. 42)
      • 15. Bhattacharya, S., Divan, D.M., Banerjee, B.: ‘Synchronous frame harmonics isolator using active series filter’. European Power Electronics Conf. EPE'91, Firenzi, Italy, 1991, pp. 3.0303.035.
    43. 43)
      • 71. Toh, C.L., Molinas, M., Norum, L.E.: ‘Regulated DC link voltage with smaller DC link capacitor in Peng's generalized theory of instantaneous reactive power’. PowerTech 2011 IEEE Trondheim, 2011, pp. 17.
    44. 44)
      • 70. Baimel, D., Belikov, J., Guerrero, J.M., et al: ‘Dynamic modeling of networks, microgrids, and renewable sources in the dq0 reference frame: a survey’, IEEE Access, 2017, 5, pp. 2132321335.
    45. 45)
      • 45. Czarnecki, L.S.: ‘What is wrong with the Budeanu concept of reactive and distortion powers and why it should be abandoned’, IEEE Trans. Instrum. Meas., 1987, IM-36, (3), pp. 834837.
    46. 46)
      • 37. Dai, X., Liu, G., Gretsch, R., et al: ‘Generalized theory of instantaneous reactive quantity for multiphase power system’, IEEE Trans. Power Deliv., 2004, 19, (3), pp. 965972.
    47. 47)
      • 57. Barbosa Rolim, L.G., Rodrigues da Costa, D., Aredes, M.: ‘Analysis and software implementation of a robust synchronizing PLL circuit based on the pq theory’, IEEE Trans. Ind. Electron., 2006, 53, (6), pp. 19191926.
    48. 48)
      • 33. Ghassemi, F.: ‘Verification of the new concept in AC power theory using energy conversion medium’. Proc. 9th Int. Conf. Harmonics Quality of Power, Orlando, USA, 2000, vol. 1, pp. 155161.
    49. 49)
      • 30. Ghassemi, F.: ‘What is wrong with the electric power theory and how it should be modified’. Presented at the Inst. Elect. Eng., 9th Int. Conf. Metering and Tarif for Energy Supply, Birmingham, UK, May 1999.
    50. 50)
      • 52. Watanabe, E.H., Aredes, M., Akagi, H.: ‘The pq theory for active filter control: some problems and solutions’, SBA: Controle & Automação Sociedade Brasileira de Automatica, 2004, 15, (1), pp. 7884.
    51. 51)
      • 60. Guo, Z.Y., Zhou, Y.Q., Guo, L.M.: ‘Current detection for four-phase transmission system based on FBD method’. CSEE, China, August 2007, vol. 27, pp. 8793.
    52. 52)
      • 41. Willems, J.L.: ‘A new interpretation of the Akagi-Nabae power components for nonsinusoidal three-phase situations’, IEEE Trans. Instrum. Meas., 1992, 41, (4), pp. 523527.
    53. 53)
      • 84. Harirchi, F., Simões, M.G.: ‘Enhanced instantaneous power theory decomposition for power quality smart converter applications’, IEEE Trans. Power Electron., 2018, 33, (11), pp. 93449359.
    54. 54)
      • 43. Goodhue, W.M.: ‘Discussion to the set of papers, reactive power concepts in need of clarification’, AIEE Trans. Electr. Eng., 1933, 52, (4), pp. 259262.
    55. 55)
      • 76. Souza, R.R., Moreira, A.B., Barros, T.A.S., et al: ‘A proposal for a wind system equipped with a doubly fed induction generator using the conservative power theory for active filtering of harmonics currents’, Electr. Power Syst. Res., 2018, 164, pp. 167177.
    56. 56)
      • 80. Paredes, H.K.M., Marafão, F.P., Mattavelli, P., et al: ‘Application of conservative power theory to load and line characterization and revenue metering’. 2012 IEEE Int. Workshop on Applied Measurements for Power Systems (AMPS) Proc., Aachen, 2012, pp. 16.
    57. 57)
      • 11. Kuster, N.L., Moore, W.J.M.: ‘On the definition of reactive power under non-sinusoidal condition’, IEEE Trans. Power Appar. Syst., 1980, PAS-99, pp. 18451854.
    58. 58)
      • 16. Ferrero, A., Superti-Furga, G.: ‘A new approach to the definition of power components in three-phase systems under nonsinusoidal conditions’, IEEE Trans. Instrum. Meas., 1991, 40, (3), pp. 568577.
    59. 59)
      • 13. Czarnecki, L.S.: ‘Orthogonal decomposition of the currents in a 3-phase nonlinear asymmetrical circuits with a nonsinusoidal voltage source’, IEEE Trans. Instrum. Meas., 1988, 37, (1), pp. 3034.
    60. 60)
      • 53. Watanabe, E.H., Aredes, M.: ‘Compensation of non-periodic currents using the instantaneous power theory’. IEEE PES Summer Meeting, Seattle, July 2000.
    61. 61)
      • 6. Budeanu, C.I.: ‘Reactive and fictitious powers’ (in Romanian) (Inst. Romain de l'Energie, Bucharest, Romania, 1927).
    62. 62)
      • 22. Nabae, A., Tanaka, T.: ‘A new definition of active-reactive current and power based on instantaneous space vectors on polar coordinates in three-phase circuits’, IEEE Trans. Power Deliv., 1996, 11, (3), pp. 12381243.
    63. 63)
      • 65. Chulines, E., Rodríguez, M.A., Duran, I., et al: ‘Simplified model of a three-phase induction motor for fault diagnostic using the synchronous reference frame DQ and parity equations’, IFAC-PapersOnLine, 2018, 51, (13), pp. 662667.
    64. 64)
      • 64. Dasgupta, S., Mohan, S.N., Sahoo, S.K., et al: ‘A FBD theory based grid frequency independent current reference generation method for a three phase inverter interfacing renewable energy sources to generalized micro-grid’. Publication in Conf. Rec. IECON, Melbourne, Australia, 2011.
    65. 65)
      • 83. Montanari, A.A., Gole, A.M.: ‘Enhanced instantaneous power theory for control of grid-connected voltage sourced converters under unbalanced conditions’, IEEE Trans. Power Electron., 2017, 32, (8), pp. 66526660.
    66. 66)
      • 32. Ghassemi, F.: ‘New concept in AC power theory’, Proc. - Gener. Transm. Distrib., 2000, 147, (6), pp. 417.
    67. 67)
      • 27. Gul, O., Kaypmaz, A.: ‘Power components in unbalanced and distorted-polyphase systems’. Proc. Electro Technical Conf., Tel Aviv, Israel, 1998, vol. 2, pp. 10041007.
    68. 68)
      • 67. Rasheduzzaman, M., Fajri, P., Kimball, J.W., et al: ‘Voltage mode control of single-phase boost inverter in dq reference frame’. IECON 2018 - 44th Annual Conf. of the IEEE Industrial Electronics Society, Washington, DC, 2018, pp. 15741579.
    69. 69)
      • 46. Czarnecki, L.S.: ‘Critical comments on the conservative power theory (CPT)’. Proc. of Int. School on Nonsinusoidal Currents and Compensation, (ISNCC), Lagow, Poland, 2015.
    70. 70)
      • 26. Salmerόn, P., Montaño, J.C.: ‘Instantaneous power components in polyphase systems under nonsinusoidal conditions’, Proc. Inst. Electr. Eng., Sci. Meas. Technol., 1996, 143, (2), pp. 151155.
    71. 71)
      • 21. Soares, V., Verdelho, P., Marques, G.D.: ‘Active power filter control circuit based on the instantaneous active and reactive current id-iq method’. Power Electronics Specialists Conf., Pesc'97mct, St. Louis, Missouri, June 22–27 1997, pp. 10961101.
    72. 72)
      • 54. Shen, S., Zheng, H., Lin, Y., et al: ‘UPQC harmonic detection algorithm based on improved pq theory and design of low-pass filter’. 2018 Chinese Control and Decision Conf. (CCDC), Shenyang, 2018, pp. 51565160.
    73. 73)
      • 74. Buasarello, T.D.C., Pomilio, J.A.: ‘Battery storage system with active filtering function based on the conservative power theory for wind generators’. 2018 IEEE Int. Conf. on Industrial Electronics for Sustainable Energy Systems (IESES), Hamilton, 2018, pp. 2126.
    74. 74)
      • 34. IEEE trial-use standard definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions’, IEEE Std. 1459, 2000.
    75. 75)
      • 77. Busarello, T.D.C., Mortezaei, A., Peres, A., et al: ‘Application of the conservative power theory current decomposition in a load power-sharing strategy among distributed energy resources’, IEEE Trans. Ind. Appl., 2018, 54, (4), pp. 37713781.
    76. 76)
      • 56. Komatsu, Y.: ‘Application of the extension pq theory to a mains-coupled photovoltaic system’. Proc. of the Power Conversion Conf.-Osaka 2002 (Cat. No.02TH8579), Osaka, Japan, 2002, vol. 2, pp. 816821.
    77. 77)
      • 59. Kang, J., Zheng, J.Y., Zeng, W.: ‘Application of FBD-method to real time current detection in three-phase four-wire system’, Electr. Power Autom. Equip., 2006, 26, pp. 3639.
    78. 78)
      • 58. Sun, Z., Jiang, X.J., Zhu, D.Q.: ‘FBD-method and its application in traction power systems’, J. Tsinghua Univ., 2003, 43, pp. 361365.
    79. 79)
      • 50. Kim, H., Blaabjerg, F., Bak-Jensen, B., et al: ‘Instantaneous power compensation in three-phase systems by using pqr theory’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 701710.
    80. 80)
      • 85. Krogeris, A., Rasevics, K., Sinka, J., et al: ‘Power in circuits of nonsinusoidal currents and voltages’ (Institute of Physical Energetics Latvian Academy of Sciences, Riga, 1993).
    81. 81)
      • 35. Tenti, P., Mattavelli, P.: ‘A time-domain approach to power term definitions under non-sinusoidal conditions’. 6th Int. Workshop on Power Definitions and Measurements under Non-Sinusoidal Conditions, Milano, October 13–15 2003.
    82. 82)
      • 49. Morsi, W.G., El-Hawary, M.E.: ‘Defining power components in nonsinusoidal unbalanced polyphase systems: the issues’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 24282438.
    83. 83)
      • 19. Komatsu, Y., Kawabata, T.: ‘Experimental comparison of pq and extension pq method for active power filter’. European Power Electronics Conf. EPE'97, Trondheim, Norway, 1997, pp. 2.7292.734.
    84. 84)
      • 28. Yoon, W.-K., Devaney, M.J.: ‘Power measurement based on the wavelet transform’, IEEE Trans. Instrum. Meas., 1998, 47, (5), pp. 12051210.
    85. 85)
      • 7. Fryze, S.: ‘Active, reactive and apparent power in nonsinusoidal systems’, Preglad Elektrot., 1931, 7, pp. 193203 (in Polish).
    86. 86)
      • 62. Pavas, A., Blanco, A.M., Parra, E.: ‘Applying FBD-power theory to analysing effective lighting devices’ impact on power quality and electric grid efficiency’, 2012 IEEE 15th Int. Conf. Harmonics and Quality of Power, Hong Kong, 2011, pp. 182189.
    87. 87)
      • 81. Morales Paredes, H.K., Costabeber, A., Tenti, P.: ‘Application of conservative power theory to cooperative control of distributed compensators in smart grids’. 2010 Int. School on Nonsinusoidal Currents and Compensation, Lagow, 2010, pp. 190196.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0244
Loading

Related content

content/journals/10.1049/iet-stg.2018.0244
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading