access icon openaccess Accurate oscillatory current-sharing in DC microgrids using distributed cooperative control method

In DC microgrids, if the oscillatory current is not shared among DGs, it may cause unallowable voltage distortion and overcurrent. In this paper, a distributed cooperative control scheme is introduced for DC microgrids in order to effectively share both the DC and the oscillatory components of current among DC sources. The hierarchical control method comprises four primary controllers namely voltage controller, conventional droop, oscillatory current droop and virtual conductance units, and three secondary controller units based on cooperative control principles. The primary controllers on each DG unit only use DGs' local information, while secondary controllers also require information of other DG units. In the secondary control part, firstly, via using the cooperative control, the DC current-sharing becomes accurate. Then, a novel droopbased oscillatory current-sharing controller unit is proposed in which by using the consensus method the error of oscillatory current-sharing is significantly reduced. A voltage observer, based on cooperative control is employed to compensate the inevitable voltage drop in DC microgrid, caused by droop controller. The voltage oscillation caused by oscillatory current-sharing unit is decreased through implementation of a virtual conductance signal applied to the inner current controller. The presented method is validated by a simulation with several cases.

Inspec keywords: distributed power generation; electric current control; voltage control; power generation control; power distribution control

Other keywords: DC microgrid; secondary controller units; virtual conductance units; single-phase loads; control principles; droop controller; hierarchical control method; inner current controller; conventional droop; distributed generations; unallowable voltage distortion; secondary controllers; three-phase loads; controller unit; oscillatory components; DC current-sharing; DG local information; DC sources; oscillatory current-sharing unit; oscillatory current droop; voltage controller

Subjects: Current control; Power system control; Distribution networks; Voltage control; Control of electric power systems; Distributed power generation

References

    1. 1)
      • 15. Karimi-Ghartemani, M., Khajehoddin, S., Jain, P., et al: ‘A systematic approach to dc-bus control design in single-phase grid-connected renewable converters’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 31583166.
    2. 2)
      • 3. Eghtedarpour, N., Farjah, E.: ‘Distributed charge/discharge control of energy storages in a renewable-energy-based DC micro-grid’, IET Renew. Power Gener., 2014, 8, (1), pp. 4557.
    3. 3)
      • 9. Zhu, G., Ruan, X., Zhang, L., et al: ‘On the reduction of second harmonic current and improvement of dynamic response for two stage single-phase inverter’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 10281041.
    4. 4)
      • 1. Augustine, S., Lakshminarasamma, N., Mishra, M.K.: ‘Control of photovoltaic-based low-voltage dc microgrid system for power sharing with modified droop algorithm’, IET Power Electron., 2016, 9, (6), pp. 11321143.
    5. 5)
      • 20. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Secondary control of microgrids based on distributed cooperative control of multi-agent systems’, IET Gener. Transm. Distrib., 2013, 7, (8), pp. 822831.
    6. 6)
      • 25. Zhou, J., Kim, S., Zhang, H., et al: ‘Consensus-based distributed control for accurate reactive, harmonic and imbalance power sharing in microgrids’, IEEE Trans. Smart Grid, 9, (4), pp. 24532467.
    7. 7)
      • 10. ‘Harmonic distortions & solutions’, Available at http://www02.abb.com/global/seitp/seitp202.nsf/0/.../ABB+Harmonics+%26+Solutions.pdf.
    8. 8)
      • 13. Rodriguez, P., Candela, J.I., Luna, A., et al: ‘Current harmonics cancellation in three-phase four-wire systems by using a four-branch star filtering topology’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 19391950.
    9. 9)
      • 23. Dehkordi, N.M., Sadati, N., Hamzeh, M.: ‘Fully distributed cooperative secondary frequency and voltage control of islanded microgrids’, IEEE Trans. Energy Convers., 2017, 32, (2), pp. 675685.
    10. 10)
      • 18. Alizadeh, E., Hamzeh, M., Birjandi, A.M.: ‘A multifunctional control strategy for oscillatory current sharing in DC microgrids’, IEEE Trans. Energy Convers., 2017, 32, (2), pp. 560570.
    11. 11)
      • 12. Hamzeh, M., Ghazanfari, A., Ashourloo, M., et al: ‘Oscillatory current management for dc microgrids with high penetration of single phase AC loads’. Proc. 23rd IEEE Int. Symp. on Industrial Electronics (ISIE), Istanbul, Turkey, June 2014, pp. 20422047.
    12. 12)
      • 26. Nasirian, V., Davoudi, A., Lewis, F.L., et al: ‘Distributed adaptive droop control for DC distribution systems’, IEEE Trans. Energy Convers., 2014, 29, (4), pp. 944956.
    13. 13)
      • 7. Shafiee, Q., Dragicevic, T., Vasquez, J., et al: ‘Hierarchical control for multiple DC-microgrids clusters’, IEEE Trans. Energy Convers., 2014, 29, (4), pp. 922933.
    14. 14)
      • 11. ‘Harmonics in power systems’, Available at http://www.industry.usa.siemens.com/drives/us/en/electric drives/ac-drives/Documents/DRV-WP-drive_harmonics_in_power_systems.pdf.
    15. 15)
      • 22. Zhang, H., Kim, S., Sun, Q., et al: ‘Distributed adaptive virtual impedance control for accurate reactive power sharing based on consensus control in microgrids’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 17491761.
    16. 16)
      • 17. Hamzeh, M., Ghazanfari, A., Mohamed, Y.A.R.I., et al: ‘Modeling and design of an oscillatory current-sharing control strategy in DC microgrids’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 66476657.
    17. 17)
      • 4. Katiraei, F., Iravani, R., Hatziargyriou, N., et al: ‘Microgrids management’, IEEE Power Energy Mag.., 2008, 6, (3), pp. 5468.
    18. 18)
      • 2. Teleke, S., Baran, M.E., Huang, A.Q., et al: ‘Control strategies for battery energy storage for wind farm dispatching’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 725732.
    19. 19)
      • 24. Dehkordi, N.M., Sadati, N., Hamzeh, M.: ‘Distributed robust finite-time secondary voltage and frequency control of islanded microgrids’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 36483659.
    20. 20)
      • 28. Boroojeni, K., Amini, M.H., Nejadpak, A., et al: ‘A novel cloud-based platform for implementation of oblivious power routing for clusters of microgrids’, IEEE. Access., 2017, 5, pp. 607619.
    21. 21)
      • 6. Nasirian, V., Moayedi, S., Davoudi, A., et al: ‘Distributed cooperative control of DC microgrids’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 22882303.
    22. 22)
      • 30. Mastromauro, R.A., Liserre, M., Kerekes, T., et al: ‘A single phase voltage-controlled grid-connected photovoltaic system with power quality conditioner functionality’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 44364444.
    23. 23)
      • 16. Krein, P., Balog, R.: ‘Method for minimizing double-frequency ripple power in single-phase power conditioners’. Patent US7 755 916 B2, July 2010.
    24. 24)
      • 5. Patterson, B.: ‘DC, come home: DC microgrids and the birth of the ‘Enernet’’, IEEE Power Energy Mag.., 2012, 10, (6), pp. 6069.
    25. 25)
      • 27. Olfati-Saber, R., Fax, J.A., Murray, R.M.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, 95, (1), pp. 215233.
    26. 26)
      • 29. Mohammadi, A., Rabinia, S.: ‘A comprehensive study of game theory applications for smart grids, demand side management programs, and transportation networks’, CoRR, 2018, abs/1804.10712.
    27. 27)
      • 21. Wu, X., Shen, C., Iravani, R.: ‘A distributed, cooperative frequency and voltage control for microgrids’, IEEE Trans. Smart Grid, 9, (4), pp. 27642776.
    28. 28)
      • 19. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Distributed cooperative secondary control of microgrids using feedback linearization’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34623470.
    29. 29)
      • 14. Liu, Q., Wang, S., Baisden, A.C., et al: ‘EMI suppression in voltage source converters by utilizing dc-link decoupling capacitors’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 14171428.
    30. 30)
      • 8. Li, Q., Wolfs, P.: ‘A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations’, IEEE Trans. Ind. Electron., 2008, 23, (3), pp. 13201333.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0239
Loading

Related content

content/journals/10.1049/iet-stg.2018.0239
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading