access icon openaccess Optimal automatic generation controllers in a multi-area interconnected power system with utility-scale PV plants

The centralised utility-scale photovoltaic (PV) plants installation has greatly enlarged their percentage in the bulk power systems, along with the nature uncertainty for the balance of system power and loads. Consequently, the successful integration of solar PV power in large-scale power systems requires a reliable and efficient multi-area automatic generation control (AGC) system within the control centre. Specifically, area-AGCs that perform tie-line bias control, in which the area frequency regulates the tie-line power flow, must balance the operational control area supply power-and-demand loads within a pre-tuned parameter set. Traditional AGC control systems have area linear controllers that must be periodically tuned to manage the high fluctuation of PV power. A practical two-step tuning method to determine the optimal parameters of existing multi-area AGCs is presented. The proposed method is demonstrated on a five-area multi-machine power system with two large PV plants. The power system was equipped with the synchrophasor-based monitoring system, with a real-time simulation platform serving as the application host. Results indicated that the two-step tuning method provides optimal parameters for all the system AGCs over a wide range of PV penetration levels. Typical results demonstrated the effectiveness of the tuned multi-area AGCs under dynamic conditions and disturbances.

Inspec keywords: power system control; power grids; photovoltaic power systems; power system stability; power engineering computing; frequency control; power system interconnection; power generation control

Other keywords: optimal automatic generation controllers; multiarea automatic generation control system; system power; multiarea interconnected power system; control centre; bulk power systems; large-scale power systems; area-AGCs; five-area multimachine power system; optimal parameters; supply power; -demand loads; PV penetration levels; existing multiarea AGCs; tie-line power flow; tie-line bias control; centralised utility-scale photovoltaic plants installation; two-step tuning method; system AGCs; utility-scale PV plants; area linear controllers; solar PV power; traditional AGC control systems; area frequency; pre-tuned parameter

Subjects: Power engineering computing; Frequency control; Control of electric power systems; Power system management, operation and economics; Optimisation techniques; Solar power stations and photovoltaic power systems; Optimisation techniques; Power system control

References

    1. 1)
      • 45. RTDS.: Available at http://www.rtds.com, accessed April 2019.
    2. 2)
      • 27. Parmar, K.P.S., Majhi, S., Kothari, D.P.: ‘LFC of an interconnected power system with multi-source power generation in deregulated power environment’, Int. J. Electr. Power Energy Syst., 2014, 57, pp. 277286.
    3. 3)
      • 19. Ventura, C., Tina, G.M.: ‘Utility scale photovoltaic plant indices and models for on-line monitoring and fault detection purposes’, Electr. Power Syst. Res., 2016, 136, pp. 4356.
    4. 4)
      • 12. Fu, R., Chung, D., Lowder, T., et al: ‘U.S. Solar photovoltaic system cost benchmark: q1 2016’, National Renewable Energy Laboratory. Available at http://www.nrel.gov/docs/fy16osti/66532.pdf, accessed April 2019.
    5. 5)
      • 15. Department of Energy: ‘Revolution now: the future arrives for five clean energy technologies—2016 updates’. Available at http://bit.ly/2iQjPbD, accessed April 2019.
    6. 6)
      • 39. Chuanwen, J., Bompard, E.A.: ‘A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment’, Energy Convers. Manag., 2003, 46, (17), pp. 26892696.
    7. 7)
      • 50. Wei, Y., Venayagamoorthy, G.K.: ‘Cellular computational generalized neuron network for frequency situational intelligence in a multi-machine power system’, Neural Netw., 2017, 93, pp. 2135.
    8. 8)
      • 42. Shayeghi, H., Shayanfar, H.A., Jalili, A.: ‘LFC design of a deregulated power system with TCPS using PSO’, Int. J. Electr. Comput. Energy Electron. Commun. Eng., 2012, 3, (4), pp. 691699.
    9. 9)
      • 46. Pal, B., Chaudhuri, B.: ‘Robust control in power system’ (Springer, New York, 2005).
    10. 10)
      • 33. Hota, P.K., Mohanty, B.: ‘Automatic generation control of multi-source power generation under deregulated environment’, Int. J. Electr. Power Energy Syst., 2016, 75, pp. 205214.
    11. 11)
      • 20. Singh, V.P., Kishor, N., Samuel, P.: ‘Load frequency control with communication topology changes in smart grid’, IEEE Trans. Ind. Inf., 2016, 12, (5), pp. 19431952.
    12. 12)
      • 13. Bolinger, M., Seel, J.: ‘Utility-scale solar 2015: an empirical analysis of project cost, performance, and pricing trends in the United States’, Lawrence Berkeley National Laboratory. Available at http://go.usa.gov/xKncY, accessed April 2019.
    13. 13)
      • 28. Shayeghi, H., Shayanfar, H.A., Malik, O.P.: ‘Robust decentralized neural networks based LFC in a deregulated power system’, Electr. Power Syst. Res., 2007, 77, (4), pp. 241251.
    14. 14)
      • 38. Naidu, K., Mokhlis, H., Bakar, A.H., et al: ‘Performance investigation of ABC algorithm in multi-area power system with multiple interconnected generators’, Appl. Soft Comput., 2017, 57, pp. 436451.
    15. 15)
      • 1. Pappachen, A., Fathima, A. P.: ‘Critical research areas on load frequency control issues in a deregulated power system: a state’, Renew. Sustain. Energy Rev., 2017, 72, pp. 163177.
    16. 16)
      • 31. Khezri, R., Golshannavaz, S., Shokoohi, S., et al: ‘Fuzzy logic based fine-tuning approach for robust load frequency control in a multi-area power system’, Electr. Power Compon. Syst., 2016, 44, (18), pp. 20732083.
    17. 17)
      • 36. Dhillon, S.S., Lather, J.S., Marwaha, S.: ‘Multi objective load frequency control using hybrid bacterial foraging and particle swarm optimized PI controller’, Int. J. Electr. Power Energy Syst., 2016, 79, pp. 196209.
    18. 18)
      • 10. Wright, A.C.: ‘Reform of power system governance in the context of system change’, IET Smart Grid, 2018, 1, (1), pp. 1924.
    19. 19)
      • 7. Bevrani, H., Hiyama, T.: ‘Intelligent automatic generation control’ (CRC Press, Boca Raton, 2011).
    20. 20)
      • 44. Muhssin, M.T., Cipcigan, L.M., Obaid, Z.A., et al: ‘A novel adaptive deadbeat-based control for load frequency control of low inertia system in interconnected zones north and south of Scotland’, Int. J. Electr. Power Energy Syst., 2017, 89, pp. 5261.
    21. 21)
      • 16. Eftekharnejad, S., Vittal, V., Heydt, G.T., et al: ‘Impact of increased penetration of photovoltaic generation on power systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 893901.
    22. 22)
      • 25. Mi, Y., Hao, X.Z., Liu, Y.J., et al: ‘Sliding mode load frequency control for multi-area time-delay power system with wind power integration’, IET Gener. Transm. Distrib., 2017, 11, (18), pp. 46444653.
    23. 23)
      • 30. Saber, F., Seyed, A.T., Mohammad, S.: ‘Grid frequency control with electric vehicles by using of an optimized fuzzy controller’, Appl. Energy, 2016, 178, (1), pp. 918928.
    24. 24)
      • 41. Arya, Y., Kumar, N.: ‘AGC of a multi-area multi-source hydrothermal power system interconnected via AC/DC parallel links under deregulated environment’, Int. J. Electr. Power Energy Syst., 2016, 75, pp. 127138.
    25. 25)
      • 48. Liang, J.: ‘Wind energy and power system interconnection, control, and operation for high penetration of wind power’, PhD dissertation. School of Electrical and Computer Engineering, Georgia Institute of Technology, 2012.
    26. 26)
      • 51. Arzani, A., Venayagamoorthy, G.K.: ‘Computational approach to enhance performance of photovoltaic system’. IET Renew. Power Gener., 2018, 12, pp. 112122.
    27. 27)
      • 24. Ma, M.M., Liu, X.J., Zhang, C.Y.: ‘LFC for multi-area interconnected power system concerning wind turbines based on DMPC’, IET Gener. Transm. Distrib., 2017, 11, (10), pp. 26892696.
    28. 28)
      • 2. Ibraheem Kumar, P., Kothari, D.P.: ‘Recent philosophies of automatic generation control strategies in power systems’, IEEE Trans. Power Syst., 2009, 20, (1), pp. 346357.
    29. 29)
      • 35. Bao, Y., Li, Y., Wang, B., et al: ‘Demand response for frequency control of multi-area power system’, J. Mod. Power Syst. Clean Energy, 2017, 5, (1), pp. 2029.
    30. 30)
      • 3. Ju, W.Y., Sun, K., Yao, R.: ‘Simulation of cascading outages using a power-flow model considering frequency’, IEEE Access, 2018, 6, pp. 3778437795.
    31. 31)
      • 49. Liang, J., Molina, D.D., Venayagamoorthy, G.K., et al: ‘Two-level dynamic stochastic optimal power flow control for power systems with intermittent renewable generation’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 26702678.
    32. 32)
      • 11. Smil, V.: ‘Energy transitions: global and national perspectives’ (Praeger, Santa Barbara, 2016, 2nd edn.).
    33. 33)
      • 8. Armstrong, R.C., Wolfram, C., Krijn, P., et al: ‘The frontiers of energy’, Nature Energy, 2016, 1, pp. 18.
    34. 34)
      • 21. Luo, H.C., Hu, Z.C., Zhang, H.C., et al: ‘Coordinated active power control strategy for deloaded wind turbines to improve regulation performance in AGC’, IEEE Trans. Power Syst., 2019, 34, (1), pp. 98108.
    35. 35)
      • 32. Hosseini, S.H., Etemadi, A.H.: ‘Adaptive neuro-fuzzy inference system based automatic generation control’, Electr. Power Syst. Res., 2008, 78, (7), pp. 12301239.
    36. 36)
      • 34. Daneshfar, F., Bevrani, H.: ‘Load-frequency control: a GA-based multi-agent reinforcement learning’, IET Gener. Transm. Distrib., 2010, 4, (1), pp. 1326.
    37. 37)
      • 47. IEEE, IEEE Std C37.118.1–2011: IEEE standard for synchrophasor measurement for power systems, 2011.
    38. 38)
      • 29. Arya, Y., Kumar, N.: ‘Fuzzy gain scheduling controllers for automatic generation control of two-area interconnected electrical power systems’, Electr. Power Compon. Syst., 2016, 44, pp. 737751.
    39. 39)
      • 14. Obama, B.: ‘The irreversible momentum of clean energy’, Science, 2017, 9, pp. 14.
    40. 40)
      • 17. Kezunovi, M., Vittal, V., Meliopoulos, S., et al: ‘The big picture: smart research for large-scale integrated smart grid solutions’, IEEE PES Mag., 2012, 10, (4), pp. 2234.
    41. 41)
      • 23. Arya, Y., Kumar, N.: ‘Optimal AGC with redox flow batteries in multi-area restructured power systems’, Eng. Sci. Tech., Int. J., 2016, 19, (3), pp. 11451159.
    42. 42)
      • 18. Pinceti, P., Vanti, M., Brocca, C., et al: ‘Design criteria for a power management system for microgrids with renewable sources’, Electr. Power Syst. Res., 2015, 122, pp. 168179.
    43. 43)
      • 4. NERC Subcommittee: ‘Balancing and frequency control’ (NERC, Princeton, 2011).
    44. 44)
      • 40. Bhatt, S.P., Ghoshal, S.P., Roy, R.: ‘Coordinated control of TCPS and SMES for frequency regulation of interconnected restructured power systems with dynamic participation from DFIG based wind farm’, Renew. Energy, 2012, 40, pp. 4050.
    45. 45)
      • 53. Valle, Y.D., Venayagamoorthy, G.K., Mohagheghi, S., et al: ‘Particle swarm optimization: basic concepts, variants and applications in power systems’, IEEE Trans. Evol. Comput., 2008, 12, (2), pp. 171195.
    46. 46)
      • 6. Bevrani, H.: ‘Robust power system frequency control’ (Springer, New York, 2014, 2nd edn.).
    47. 47)
      • 52. Yazdani, A., Dash, P.: ‘A control methodology and characterization of dynamics for a photovoltaic (PV) system interfaced with a distribution network’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 15381555.
    48. 48)
      • 37. Kouba, N.E.Y., Menaa, M., Hasni, M., et al: ‘LFC enhancement concerning large wind power integration using new optimized PID controller and RFBs’, IET Gener. Transm. Distrib., 2016, 10, (16), pp. 40654077.
    49. 49)
      • 43. Hou, G., Qin, L., Zheng, X., et al: ‘Application of PSO-based fuzzy PI controller in multi-area AGC system after deregulation’, Proc. IEEE, 2012, 1, pp. 14171422.
    50. 50)
      • 26. Chen, C., Zhan, K., Yuan, K., et al: ‘Tie-line bias control applicability to load frequency control for multi-area interconnected power systems of complex topology’, Energies, 2017, 10, (78), pp. 115.
    51. 51)
      • 22. Arya, Y.: ‘AGC performance enrichment of multi-source hydrothermal gas power systems using new optimized FOFPID controller and redox flow batteries’, Energy, 2017, 127, pp. 704715.
    52. 52)
      • 9. Milligan, M., Frew, B., Kirby, B., et al: ‘Alternatives no more: wind and solar power are mainstays of a clean, reliable, affordable grid’, IEEE PES. Mag., 2016, 13, (6), pp. 7887.
    53. 53)
      • 5. NERC: ‘Glossary of terms used in NERC reliability standards’ (NERC, Atlanta, 2014).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0238
Loading

Related content

content/journals/10.1049/iet-stg.2018.0238
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading