access icon openaccess Practical distributed voltage control method for efficient and equitable intervention of distributed devices

Growing penetrations of distributed photovoltaic (PV) generation in low-voltage electrical networks are raising new challenges for electricity industry operation. Voltage rise is a particular concern and new distributed voltage management techniques have been proposed in the literature. In this study, a novel distributed voltage control method is presented. The method is designed to be used by both PV systems and controllable loads and uses both a voltage and a power set point to manage control. These set points, along with a voltage sensitivity measure, are then used to control PV system generation and load-shedding. The objective of the control is to keep voltage levels within operational limits with reasonable accuracy. The method is practical; local measurements of net-power and voltage are used with no additional communication infrastructure required. The proposed method is compared to a power set point only and a voltage set point only control method. Results show the proposed method improves on both methods in terms of both voltage accuracy and the equity of intervention.

Inspec keywords: load shedding; photovoltaic power systems; distributed control; distributed power generation; load regulation; voltage control; electricity supply industry

Other keywords: voltage sensitivity measure; PV systems; voltage rise; voltage accuracy; distributed devices; voltage set point; distributed voltage control method; low-voltage electrical networks; electricity industry operation; power set point; distributed voltage management techniques; distributed photovoltaic generation

Subjects: Power system management, operation and economics; Solar power stations and photovoltaic power systems; Power system control; Control of electric power systems; Distributed power generation; Voltage control; Multivariable control systems

References

    1. 1)
      • 24. Samadi, A., Eriksson, R., Soder, L., et al: ‘Coordinated active power-dependent voltage regulation in distribution grids with PV systems’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 14541464.
    2. 2)
      • 6. Scott, N.C., Atkinson, D.J., Morrell, J.E.: ‘Use of load control to regulate voltage on distribution networks with embedded generation’, IEEE Trans. Power Syst., 2002, 17, (2), pp. 510515.
    3. 3)
      • 21. Zhao, J., Golbazi, A., Wang, C., et al: ‘Optimal and fair real power capping method for voltage regulation in distribution networks with high PV penetration’. 2015 IEEE Power & Energy Society General Meeting, Denver, USA, 2015.
    4. 4)
      • 38. Rylander, M., Li, H., Smith, J., et al: ‘Default volt-var inverter settings to improve distribution system performance’. Power and Energy Society General Meeting (PESGM), 2016, Boston, USA, 2016.
    5. 5)
      • 30. Katsanevakis, M., Stewart, R.A., Junwei, L.: ‘A novel voltage stability and quality index demonstrated on a low voltage distribution network with multifunctional energy storage systems’, Electr. Power Syst. Res., 2019, 171, pp. 264282.
    6. 6)
      • 28. Sondermeijer, O., Dobbe, R., Arnold, D., et al: ‘Regression-based inverter control for decentralized optimal power flow and voltage regulation’. Power & Energy Society General Meeting, Boston, USA, 2016.
    7. 7)
      • 3. Liu, Y., Bebic, J., Kroposki, B., et al: ‘Distribution system voltage performance analysis for high-penetration PV’. 2008 IEEE Energy 2030 Conf., Atlanta, USA, 2008.
    8. 8)
      • 19. Alyami, S., Wang, Y., Wang, C., et al: ‘Adaptive real power capping method for fair overvoltage regulation of distribution networks with high penetration of PV systems’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 27292738.
    9. 9)
      • 22. Xin, H., Qu, Z., Seuss, J., et al: ‘A self-organizing strategy for power flow control of photovoltaic generators in a distribution network’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 14621473.
    10. 10)
      • 10. Steffel, S.J., Caroselli, P.R., Dinkel, A.M., et al: ‘Integrating solar generation on the electric distribution grid’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 878886.
    11. 11)
      • 7. Christakou, K., et al: ‘GECN: primary voltage control for active distribution networks via real-time demand-response’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 622631.
    12. 12)
      • 26. Muttaqi, K.M., Le, A.D.T., Negnevitsky, M., et al: ‘A coordinated voltage control approach for coordination of OLTC, voltage regulator, and DG to regulate voltage in a distribution feeder’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 12391248.
    13. 13)
      • 12. Sugihara, H., Yokoyama, K., Saeki, O., et al: ‘Economic and efficient voltage management using customer-owned energy storage systems in a distribution network with high penetration of photovoltaic systems’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 102111.
    14. 14)
      • 25. Samadi, A., Shayesteh, E., Eriksson, R., et al: ‘Multi-objective coordinated droop-based voltage regulation in distribution grids with PV systems’, Renew. Energy, 2014, 71, pp. 315323.
    15. 15)
      • 8. Argiento, R., Faranda, R., Pievatolo, A., et al: ‘Distributed interruptible load shedding and micro-generator dispatching to benefit system operations’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 840848.
    16. 16)
      • 31. Turitsyn, K., Sulc, P., Backhaus, S., et al: ‘Options for control of reactive power by distributed photovoltaic generators’, Proc. IEEE, 2011, 99, (6), pp. 10631073.
    17. 17)
      • 14. Bernstein, A., Reyes-Chamorro, L., Le Boudec, J.Y., et al: ‘A composable method for real-time control of active distribution networks with explicit power setpoints. Part I: framework’, Electr. Power Syst. Res., 2015, 125, pp. 254264.
    18. 18)
      • 16. Cavraro, G., Caldognetto, T., Carli, R., et al: ‘A master/slave control of distributed energy resources in low-voltage microgrids’. 2016 European Control Conf. (ECC), Aalborg, Denmark, 2016.
    19. 19)
      • 23. Weckx, S., Gonzalez, C., Driesen, J.: ‘Combined central and local active and reactive power control of PV inverters’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 776784.
    20. 20)
      • 5. Goodwin, S.E., Krause, O.: ‘Mitigation of voltage band violations through distributed active and reactive power control of inverter based PV generation on LV networks’. 2013 IEEE Power and Energy Society General Meeting (PES), Vancouver, Canada, 2013.
    21. 21)
      • 2. Australian PV Institute (APVI): ‘Solar PV map’. Available at http://pv-map.apvi.org.au/.
    22. 22)
      • 4. Kerber, G., Witzmann, R., Sappl, H.: ‘Voltage limitation by autonomous reactive power control of grid connected photovoltaic inverters’. Compatability and Power Electronics, Badajoz, Spain, 2009.
    23. 23)
      • 11. Medina, J., Muller, N., Roytelman, I.: ‘Demand response and distribution grid operations: opportunities and challenges’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 193198.
    24. 24)
      • 34. Heslop, S., MacGill, I.: ‘Operational characteristics of a cluster of distributed photovoltaic systems’. 2011 IEEE PES Innovative Smart Grid Technologies Asia (ISGT), Perth, Australia, 2011.
    25. 25)
      • 35. AS4777.2:2015 Grid connection of energy systems via inverters – Inverter requirements, 2015.
    26. 26)
      • 1. REN21: ‘Renewables 2018 global status report’, 2018.
    27. 27)
      • 36. Cavraro, G., Bolognani, S., Carli, R., et al: ‘The value of communication in the voltage regulation problem’. 2016 IEEE 55th Conf. on Decision and Control (CDC), Las Vegas, USA, 2016.
    28. 28)
      • 20. Tonkoski, R., Lopes, L.A., El-Fouly, T.H.: ‘Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention’, IEEE Trans. Sustain. Energy, 2011, 2, (2), pp. 139147.
    29. 29)
      • 29. Sansawatt, T., Ochoa, L.F., Harrison, G.P.: ‘Smart decentralized control of DG for voltage and thermal constraint management’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 16371645.
    30. 30)
      • 32. Alam, M.J., Muttaqi, K.M., Sutanto, D.: ‘A three-phase power flow approach for integrated 3-wire MV and 4-wire multigrounded LV networks with rooftop solar PV’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 17281737.
    31. 31)
      • 13. Shahnia, F., Wishart, M.T., Ghosh, A.: ‘Voltage regulation, power balancing and battery storage discharge control by smart demand side management and multi-objective decision making’. 2013 Australasian Universities Power Engineering Conf. (AUPEC), Hobart, Australia, 2013.
    32. 32)
      • 9. Malik, O., Havel, P.: ‘Active demand-side management system to facilitate integration of res in low-voltage distribution networks’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 673681.
    33. 33)
      • 33. Ausgrid: ‘Solar home electricity data’. Available at http://www.ausgrid.com.au/Common/About-us/Corporate-information/Data-to-share/Solar-home-electricity-data.aspx#.WOilAtKGNhE.
    34. 34)
      • 15. Caldognetto, T., Buso, S., Tenti, P., et al: ‘Power-based control of low-voltage microgrids’, IEEE J. Emerging Sel. Topics Power Electron., 2015, 3, (4), pp. 10561066.
    35. 35)
      • 17. Bletterie, B., Kadam, S., Bolgaryn, R., et al: ‘Voltage control with PV inverters in low voltage networks—in depth analysis of different concepts and parameterization criteria’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 177185.
    36. 36)
      • 27. Marra, F., Yang, G., Traeholt, C., et al: ‘A decentralized storage strategy for residential feeders with photovoltaics’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 974981.
    37. 37)
      • 18. Wiebe, D., Mancilla-David, F., Carrasco, M., et al: ‘Photovoltaic inverter dispatch for voltage regulation in power distribution systems: a comparative evaluation’. 2016 North American Power Symp. (NAPS), Denver, USA, 2016.
    38. 38)
      • 37. Abate, S., McDermott, T.E., Rylander, M., et al: ‘Smart inverter settings for improving distribution feeder performance’. 2015 IEEE Power & Energy Society General Meeting, Denver, USA, 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0197
Loading

Related content

content/journals/10.1049/iet-stg.2018.0197
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading